Skewness Ranking Optimization for Personalized Recommendation

Yu-Neng Chuang CS, National Chengchi University, Taiwan

Joint work with Prof. Chuan-Ju Wang, Chih-Ming Chen, Prof. Ming-Feng Tsai

> August 5, 2020 UAI, Toronto, Canada

- Preliminaries and Observation
- Skewness Ranking Optimization (Skew-OPT)
- Experiment Results
- Conclusion

Agenda

Preliminaries and Observation

Preliminaries and Observation

Introduction

- Each user/item can be projected into an embedding.
- All embeddings form a distribution.

UAI'20

Skew-OPT Experiment Results

Preliminaries and Observation Skew-OPT **Experiment Results**

Introduction

• Goal: Find a distribution that is good for recommendation.

Preliminaries and Observation

Preliminaries and Observation

Bayesian Personalized Ranking (BPR)

UAI'20

Skew-OPT

Experiment Results

• We observed that the distributions $\hat{x}_{uij}(\Theta)$ learned from BPR are usually right-skewed—Skew normal distribution!

UAI'20

Skew-OPT **Experiment Results Preliminaries and Observation**

- Under the assumption of skew normal distribution, there are two main ways to enlarge the $p(\hat{x}_{uij}(\Theta) > 0)$ should benefit recommendation performance:
 - Shift the distribution right-ward.

UAI'20

Skew-OPT Experiment Results

Skewness Optimization Ranking

- Inspired by the observations, we manage to leverage the features of skew normal distribution to better model the personalized ranking problem.
 - NOTE: For personalized ranking, the estimator $\hat{x}_{uij}(\Theta) = \hat{x}_{ui} \hat{x}_{uj}$ is to describe as the random variable X which is assumed to follow the skew normal distribution.
 - GOAL (1): To push the distribution right-ward for a larger $p(\hat{x}_{uij}(\Theta) > 0)$.
 - GOAL (2): To have a larger $p(\hat{x}_{uij}(\Theta) > 0)$ by adjusting the shape parameter.

- Skewness optimization ranking (Skew-OPT)
 - We design the likelihood function of Skew-OPT

 $p(i >_{\mu} j | \Theta, (\xi, \omega, \eta))$

- where η is set to be odd integer. The location parameter ξ allows Skew-OPT to push the distribution of the estimator \hat{x}_{uij} right-ward.
- The scale parameter ω reduces the model over-fitting for large ξ .

Experiment Results Skew-OPT

- **Skewness Optimization Ranking**

$$\eta)) = \sigma\left(\left(\frac{\hat{x}_{uij}(\Theta) - \xi}{\omega}\right)^{\eta}\right)$$

Skewness Optimization Ranking

Therefore, the optimization criterion of Skew-OPT becomes maximizing

• Skew-OPT :=
$$\ln \prod_{(u,i,j)\in D_S} p(i >_u j | \Theta, (\xi, \omega, \eta)) p(\Theta)$$

$$= \sum_{(u,i,j)\in D_S} \ln p(i >_u j | \Theta, (\xi, \omega, \eta)) + \ln p(\Theta)$$

$$= \sum_{(u,i,j)\in D_S} \ln \sigma \left(\left(\frac{\hat{x}_{uij}(\Theta) - \xi}{\omega} \right)^{\eta} \right) - \lambda_{\Theta} \|\Theta\|^2.$$
(6)

Skew-OPT is maximizing by utilizing the asynchronous stochastic gradient ascent for updating the learned parameters Θ .

Skewness Optimization Ranking

Skew-OPT and how Skew-OPT optimize the skewness value.

and the skewness value of the estimator, $\hat{x}_{uij}(\Theta)$.

 $\left(\frac{\hat{x}_{uij}(\Theta) - \xi}{\omega}\right)$ Max $\ln \sigma$

- Now we start to describe the relation between shape parameter α and
 - Lemma 1. Given the case that \hat{x}_{uij} follows a skew normal distribution with fixed location parameter ξ and scale parameter ω , maximizing the first term of Eq. (6) for a certain η simultaneously maximizes the shape parameter α

Skewness Optimization Ranking

- The relation between Skew-OPT and AUC
 - We here consider micro-AUC :
 - $AUC^{micro} := \frac{1}{|D_S|}$
- Since we assume that \hat{x}_{uii} follows skew normal distribution, $AUC^{\text{micro}} := \mathbb{E}\left[\delta(\hat{x}_{uij})\right]$ =1 - F(0) $=1-\Psi\left(\frac{1}{2}\right)$

Skew-OPT Experiment Results

$$\frac{1}{|s|} \sum_{(u,i,j)\in D_S} \delta(\hat{x}_{uij} > 0)$$

$$p(\hat{x}_{uij} > 0)] = p(\hat{x}_{uij} > 0)$$

$$\frac{0 - \xi}{\omega} + 2T\left(\left(\frac{0 - \xi}{\omega}\right), \alpha\right)$$

Skewness Optimization Ranking

- The relation between Skew-OPT and AUC
 - to the right, so we just discuss when $\xi > 0$.

lim AUC^{micro} := $\mathbb{E} \left[\delta(\hat{x}_{uij}) \right]$ $\alpha \rightarrow \infty$ $=1-\Psi\left(rac{0}{-}\right)$ $=1-\Psi\left(rac{0}{-}\right)$ =1• Therefore, when $\alpha \to \infty$, then AUC^{mirco} $\to 1$.

UAI'20

Skew-OPT seeks to maximize the estimator by shifting the distribution

$$\sum_{\substack{\alpha \to \infty \\ \alpha \to \infty}} \left[p(\hat{x}_{uij} > 0) + \lim_{\alpha \to \infty} 2T\left(\left(\frac{0-\xi}{\omega}\right), \alpha\right) + \frac{1}{\omega} \left(\frac{0-\xi}{\omega}\right) + \Psi\left(\frac{0-\xi}{\omega}\right) \right]$$

Experiment Results

- Datasets : Five different public real-world datasets.
 - Transfer into implicit feedback.
 - Above 3.5 points treat as preferring item. \bigcirc
 - Below 3.5 points treat as dislike item.

	Users	Items	Edges
CiteULike	5,551	16,980	210,504
Amazon-Book	70,679	24,916	846,522
Last.fm-360K	23,566	48,123	303,4763
MovieLens-Latest	259,137	40,110	24,404,096
Epinions-Extend	701,498	110,235	12,581,748

UAI'20

Skew-OPT

Experiment Results

Edge type like/dislike 5-star play count 5-star 5-star

Experiment Results

Top-N recommendation performance

	CiteUlike		Amazon-Book		Last.fm-360K		MovieLens-Latest		Epinions-Extend	
	Recall@10	mAP@10	Recall@10	mAP@10	Recall@10	mAP@10	Recall@10	mAP@10	Recall@10	mAP@10
WRMF [10, 4]	0.2159	0.1236	0.0950	0.0374	0.1308	0.0576	0.2122	0.1061	0.1025	0.0415
BPR [11]	0.2217	0.1332	0.0972	0.0390	0.1394	0.0690	0.1952	0.1097	0.1137	0.0584
WARP [14]	0.1859	0.1033	0.0869	0.0356	† 0.1763	† 0.0937	† 0.2748	† 0.1634	0.1479	0.0711
Hop-Rec [16]	0.2232	0.1319	† 0.1072	† 0.0426	0.1701	0.0870	0.2557	0.1419	† 0.1617	† 0.0813
NGCF [13]	† 0.2321	† 0.1367	0.0818	0.0335	-	-	-	-		-
Skew-OPT ($\eta = 1$)	*0.2413	*0.1541	0.1069	*0.0467	*0.1976	*0.1051	0.2809	0.1636	*0.1743	*0.0914
Improv. (%)	+3.96%	+12.72%	-0.27%	+9.62%	+12.08%	+12.17%	+2.21%	+0.12%	+7.79%	+12.42%
Skew-OPT ($\eta = 3$)	*0.2481	*0.1591	*0.1173	*0.0504	*0.2032	*0.1103	*0.2852	*0.1686	*0.1768	*0.0941
Improv. (%)	+6.89%	+16.38%	+9.42%	+18.07%	+15.25%	+17.71%	+3.78%	+3.18%	+9.33%	+15.74%
Skew-OPT ($\eta = 5$)	*0.2553	*0.1626	*0.1163	*0.0522	*0.2012	*0.1083	*0.2879	*0.1699	*0.1758	*0.0915
Improv. (%)	+9.91%	+18.94%	+8.48%	+22.53%	+14.12%	+15.58%	+4.76%	+3.97%	+8.71%	+12.54%

It is worthy to say that Skew-OPT win against HOP-Rec and NGCG without exploiting high-order information.

Experiment Results

Sensitivity Analysis of the best performance

UAI'20

Skew-OPT

Experiment Results

Experiment Results

Distribution Analysis

UAI'20

Skew-OPT

Experiment Results

- personalized recommendation problems.
- This work is first to analyze the learned embedding space for personalized recommendation task.

Conclusion

Skew-OPT provides probability distribution perspective to analyze the

 Skew-OPT leverages the feature from skew normal distribution and provides three extra degrees of freedom for ranking optimization.

• Skew-OPT is now publicly available on GitHub: Repo: <u>https://github.com/cnclabs/codes.skewness.rec</u> • Skew-OPT is implemented on the framework of SMORe: Repo: <u>https://github.com/cnclabs/smore</u>

Skew-OPT Implementation

Thanks For Your Listening Any Question ?

