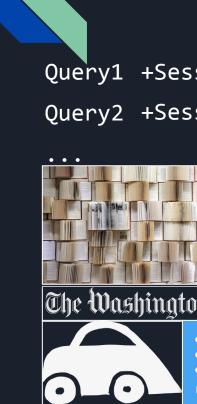


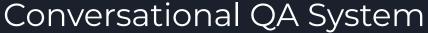
Presenters: PARTI: Sheng-Chieh Lin CITI, Academia Sinica PARTII: Jheng-Hong Yang CITI, Academia Sinica

Outline

- Our Conversational QA system
- Historical Query Expansion
- Historical Answer Expansion
- Experimental Results

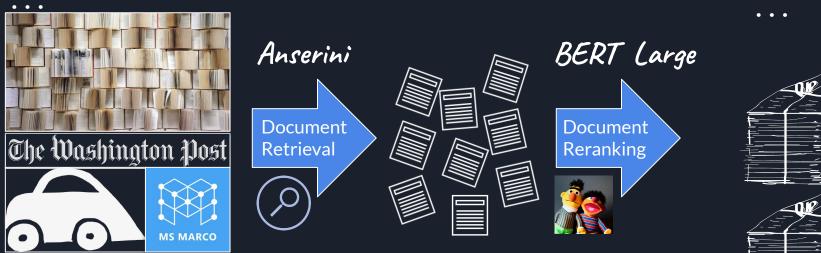
Conversational QA System





Query1 +Session Title Query2 +Session Title

Answer1 Answer2



Our Strong Baseline! But...

Retrieval	Origin	Title
Re-ranking	Origin	Title
R@1000	0.440	0.774
mAP	0.069	0.187
mRR@10	0.120	0.273

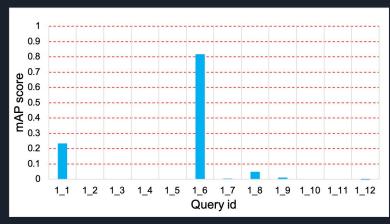
Historical Query Expansion

Motivation: Why some queries get better mAP scores?

Session1:

1 What is a physician's assistant?

- 2 What are the educational requirements required to become one?
- 3 What does it cost?
- 4 What's the average starting salary in the UK?
- 5 What about in the US?
- 6 What school subjects are needed to become a registered nurse?
- 7 What is the PA average salary vs an RN?
- 8 What the difference between a PA and a nurse practitioner?
- 9 Do NPs or PAs make more?
- 10 Is a PA above a NP?
- 11 What is the fastest way to become a NP?
- 12 How much longer does it take to become a doctor after being an NP?



Observation 1: Ambiguous queries can be detected automatically

Q

Score Query

- 11.73 What is a physician's assistant?
- 14.96 What are the educational requirements required to become one?

9.29 What does it cost?

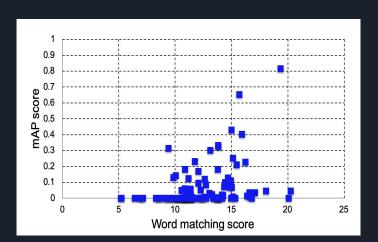
Query	Doc1	Score1
	Doc2	Score2
	DocN	ScoreN

Observation 1: Ambiguous queries can be detected automatically

Score Query

- 11.73 What is a physician's assistant?
- 14.96 What are the educational requirements required to become one?

9.29 What does it cost?



Observation 2: Keywords can be extracted from queries

Score Query

- 11.73['What', 'is', 'a', 'physician', "'s", 'assistant', '?'][3.13, -1, -1, 5.87, 3.58, 4.24, -1]
- 14.96['What', 'are', 'the', 'educational', 'requirements', 'required', 'to', 'become', 'one', '?'][3.13, -1, -1, 3.92, 3.75, 3.75, -1, 3.48, 2.09, -1]
- 9.29 ['What', 'does', 'it', 'cost', '?'] [3.13, 3.90, -1, 3.42, -1] Word Doc1

Doc1	Score1
Doc2	Score2
DocN	ScoreN

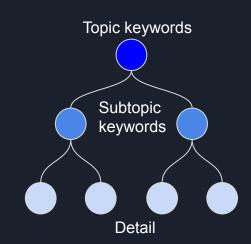


become cost

Assumption

A clear query requires:

- 1. Topic keywords: last along the whole session
- 2. Subtopic keywords: last along several turns
- 3. Detail: last only one turn



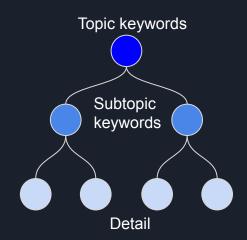
Methodology

A clear query requires:

- 1. Topic keywords: last along the whole session
- 2. Subtopic keywords: last along several turns
- 3. Detail: last only one turn

For each query:

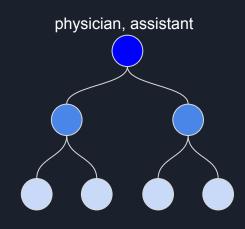
- 1. Extract topic keywords (R1=4)
- 2. Extract subtopic keywords (R2=3.5)
- 3. Check if a query is ambiguous (θ =10)
 - a. Yes: Add topic keywords except for the first query
 - b. No: Add topic keywords + subtopic keywords extracted from previous N turns

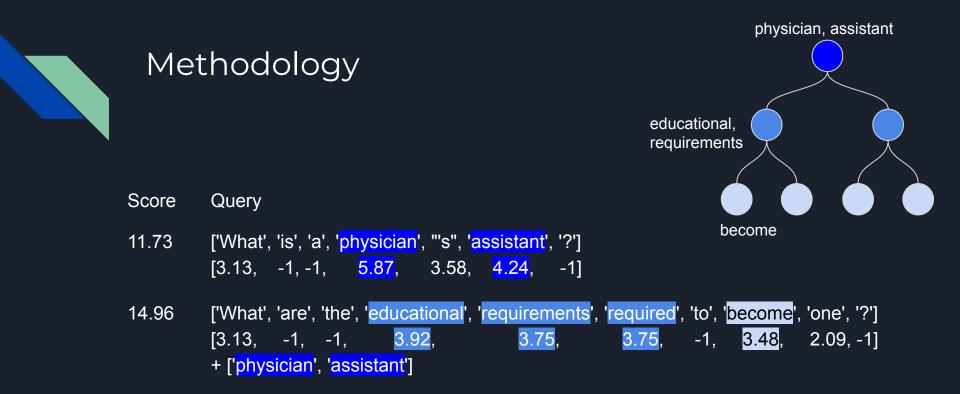


Methodology

Score	Query

11.73 ['What', 'is', 'a', 'physician', "'s", 'assistant', '?'] [3.13, -1, -1, 5.87, 3.58, 4.24, -1]



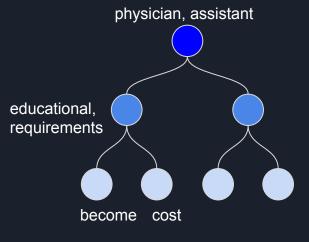


Score

11.73

Methodology

Query



- 14.96 ['What', 'are', 'the', 'educational', 'requirements', 'required', 'to', 'become', 'one', '?'] [3.13, -1, -1, 3.92, 3.75, 3.75, -1, 3.48, 2.09, -1] + ['physician', 'assistant']
- 9.29 ['What', 'does', 'it', 'cost', '?'] [3.13, **3.90**, -1, **3.42**, -1] + ['physician', 'assistant'] + ['educational', 'requirements', 'required']

['What', 'is', 'a', 'physician', "'s", 'assistant', '?']

[3.13, -1, -1, **5.87**, 3.58, **4.24**, -1]

Result

Retrieval	Origin	Title	HQExp
Re-ranking	Origin	Title	HQExp
R@1000	0.440	0.774	0.818
mAP	0.069	0.187	0.192
mRR@10	0.120	0.273	0.264

Historical Answer Expansion

Motivation

- A rule-based model for history selection [1]
- Given (p, q_k , a_k , H_k), where H_k stands for the history of (q_k , a_k) pairs
- A subset of history turns: $H_k' = H_{k-T}$ is considered useful, where T = # of lagged turns

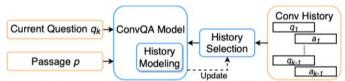


Figure 1: A general framework for ConvQA. Orange denotes model input and blue denotes model components.

Reference:

[1] Qu, Chen, et al. BERT with History Answer Embedding for Conversational Question Answering. 2019. In SIGIR 1133-1136.

Assumption

- Semantic of q_k changed smoothly within a conversation: φ(q_{k-1})~= φ(q_k), where φ stands for semantic mapping function
- Historical answer candidates are less important

Example

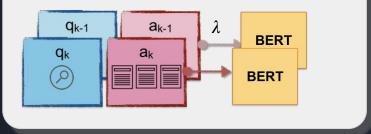
Session1:

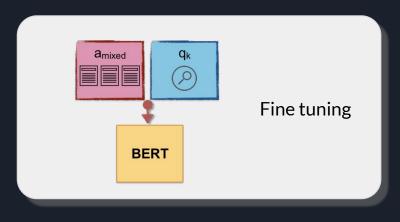
- 1 What is a physician's assistant?
- 2 What are the educational requirements required to become one?
- 3 What does it cost?
- 4 What's the average starting salary in
- the UK?
- 5 What about in the US?
- 6 ...

Methodology

- Consider previous one turn only: $H_{k}^{'} = H_{k-1}$
- Just apply pretrained BERT as our query-passage likelihood function
- Log-likelihood of BERT(q_{k-1} , a_{k-1}) is modulated by a hyperparameter λ
- Take top-1000 by sorted list with [BERT(q_k, a_k), λ^* BERT(q_{k-1}, a_{k-1})]
- Fine-tuning with $BERT(q_k, set(a_k, a_{k-1})_{top-1000})$

History Selection





Results - Training Set of CAsT

- HAE improves recall in all cases
 - Subset of history is useful
- HAE + full HQE in both stages have the best performance in recall and ranking
 - 3rd fine-tuning procedure is helpful in this combination

Retrieval	Title	Title	HQExp	HQExp
Re-ranking	Title	HQExp	Title	HQExp
R@1000	0.755	0.755	0.818	0.818
mAP	0.188	0.194	0.189	0.192
mRR@10	0.274	0.281	0.257	0.264
		+HAExp		
R@1000	0.772	0.772	0.844	0.844
mAP	0.187	0.191	0.193	0.197
mRR@10	0.273	0.277	0.268	0.277

Other Methods

Query (Corpus) Expansion

- RM3 (Query)
 - Relevance feedback model implemented in Anserini [2]
 - We use RM3 to improve recall in the first stage
- Doc2Query (Corpus)
 - Seq2seq query generation model pre-trained on MS MARCO [3]
 - Use predicted top-5 queries from D2Q to expand only one of the three corpus (MS MARCO) in CAsT

Reference:

[2] Victor Lavrenko and W. Bruce Croft□. 2001. Relevance Based Language Models. In SIGIR. 120–127

[3] Nogueira, Rodrigo, et al. Document Expansion by Query Prediction. 2019. In arXiv preprint arXiv:1904.08375.

Results - Training Set of CAsT

Corpus		CAsT		CAsT + D2Q (MARCO)					
Retrieval	Title	Title + RM3	HQExp	Title	Title + RM3	HQExp			
Re-ranking	Title	Title	Title	Title	Title	Title			
R@1000	0.755	0.774	0.818	0.759	0.769	0.805			
mAP	0.188	0.187	0.189	0.189	0.181	0.188			
mRR@10	0.274	0.273	0.257	0.281	0.279	0.262			

- RM3 improves recall
 - Treat queries in each turn independently still works
- D2Q only improves the case involving title in both stages
 - May due to the mismatch of queries between CAsT and pure MS MARCO
 - \circ ~ Predicted queries for CAR and WAPO are not considered
- HQE provides best performance with/without corpus modification

Coreference Resolution

Results - Annotated Subset of CAsT

	Retrieval	Title+RM3	Title+RM3	HQExp	HQExp
Coreference resolution from	Re-ranking	Title	Coref	HQExp	Coref
CAsT host	R@1000	0.897	0.897	0.859	0.859
• Evaluated on annotated subset	mAP	0.258	0.397	0.274	0.374
 of CAsT training set only HQE is enhanced by Coref in 	mRR@10	0.358	0.552	0.433	0.544
the re-ranking stage			+HAExp		
• HAE still improves recall, but it	R@1000	0.910	0.910	0.863	0.863
hurts ranking metrics in the	mAP	0.257	0.388	0.272	0.371
fine-tuning stage	mRR@10	0.358	0.524	0.431	0.520

Submissions

Overall Results - Training Set of CAsT

• Due to superiority of coreference resolution on the annotated training subset, we choose to submit heavily on combinations with Coref involved flow

		Table	1: Training s	et			Table 2: Co-reference effect on annotated subset						
Condition	1	2	3	4	5	6	Condition	1	2	3	4	5	6
Retrieval	Title	Title	Title	HQExp	HQExp	HQExp	Retrieval	Title	Title	Title	HQExp	HQExp	HQExp
Re-ranking	Title	HQExp	Coref	Title	HQExp	Coref	Re-ranking	Title	HQExp	Coref	Title	HQExp	Coref
R@1000	0.774	0.774		0.818	0.818		R@1000	0.897	0.897	0.897	0.859	0.859	0.859
mAP	0.187	0.194		0.189	0.192		mAP	0.258	0.291	0.392	0.261	0.274	0.374
mRR@10	0.273	0.282		0.257	0.264		mRR@10	0.358	0.442	0.525	0.377	0.433	0.544
+HAExp							+	HAExp					
R@1000	0.790	0.790		0.844	0.844		R@1000	0.910	0.910	0.910	0.863	0.863	0.863
mAP	0.187	0.192	-	0.193	0.197		mAP	0.257	0.285	0.388	0.261	0.272	0.371
mRR@10	0.273	0.279		0.268	0.277		mRR@10	0.358	0.440	0.524	0.377	0.431	0.520

Results on Evaluation Set of CAsT

		Automatic Runs						
RUN_TAG	CFDA_CLIP_1	H2OLOO_2	H2OLOO_3	H2OLOO_4	H2OLOO_5	CFDA_CLIP_6	CFDA_CLIP_7	CFDA_CLIP_8
Indexed	MARCO	CAsT	CAsT	CAsT	CAsT	CAsT	CAsT+D2Q	CAsT+D2Q
Retrieval	Title	Title	Title	Title+RM3	HQExp	Coref+RM3	Title	HQExp
Re-ranking	Coref	HQExp	Coref	Coref	Coref	Coref	HQExp	Coref
+HAE					V			V
R@1000	0.412	0.632	0.632	0.639	0.689	0.812	0.611	0.695
mAP	0.226	0.274	0.324	0.321	0.354	0.395	0.269	0.363
mAP@5	0.071	0.066	0.082	0.081	0.096	0.101	0.068	0.099
NDCG@5	0.459	0.427	0.530	0.532	0.564	0.576	0.427	0.568

Conclusions

- Proposed two ad-hoc methods for conversational-information-seeking problem defined in Conversational Assistant Track (CAsT) in TREC 2019
- Two proposed methods are suitable for the dataset with few labels
- Coreference resolution is not addressed in the current setting
- Need a detailed analysis on the full combinations of corpus expansion/query expansion/history (Q&A) expansion

Thank you