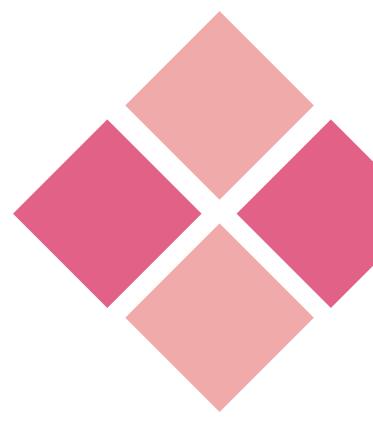
Multiperiod Corporate Default Prediction Through Neural Parametric Family Learning

Wei-Lun Luo, Yu-Ming Lu, Jheng-Hong Yang, Jin-Chuan Duan, Chuan-Ju Wang 2022.4.28

Asian Institute of **Digital Finance**



- Introduction of Credit risk
 - Default risk
- Related works
 - Niche
- Methodology
- Results

Outline

Lend	n
Mee)
With	t

Banks

Credit risk

money to obligors

et its obligations the agreed terms

Obligor

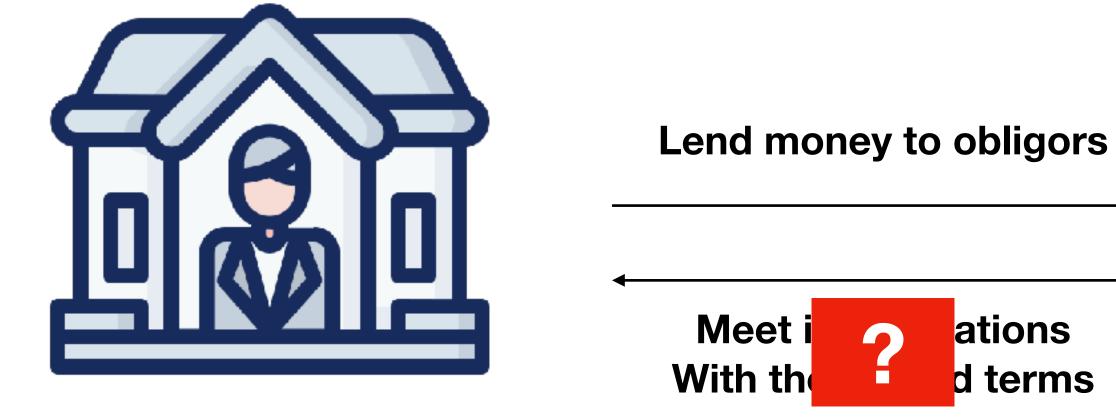
Lend r	٦
Мее)
With t	t

Banks

Credit risk

money to obligors

Obligor

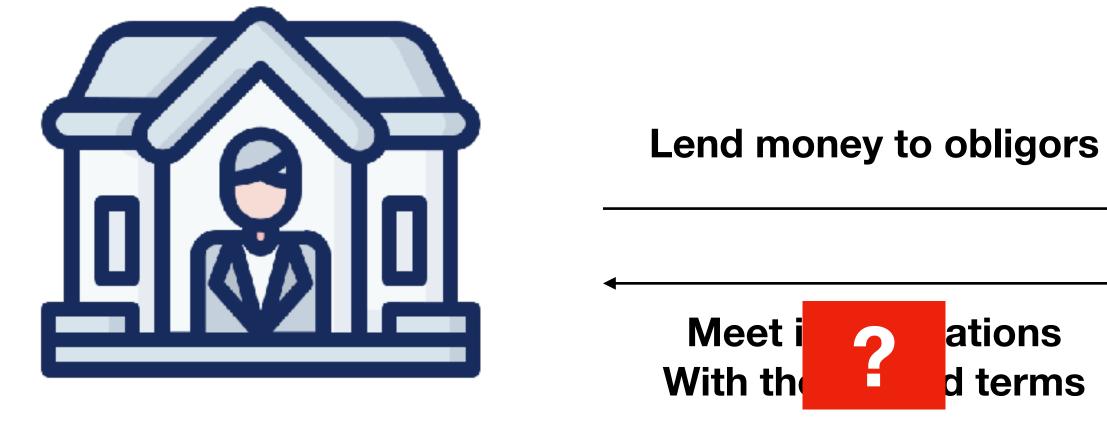


Banks

Credit risk

Credit risk

Obligor



Banks

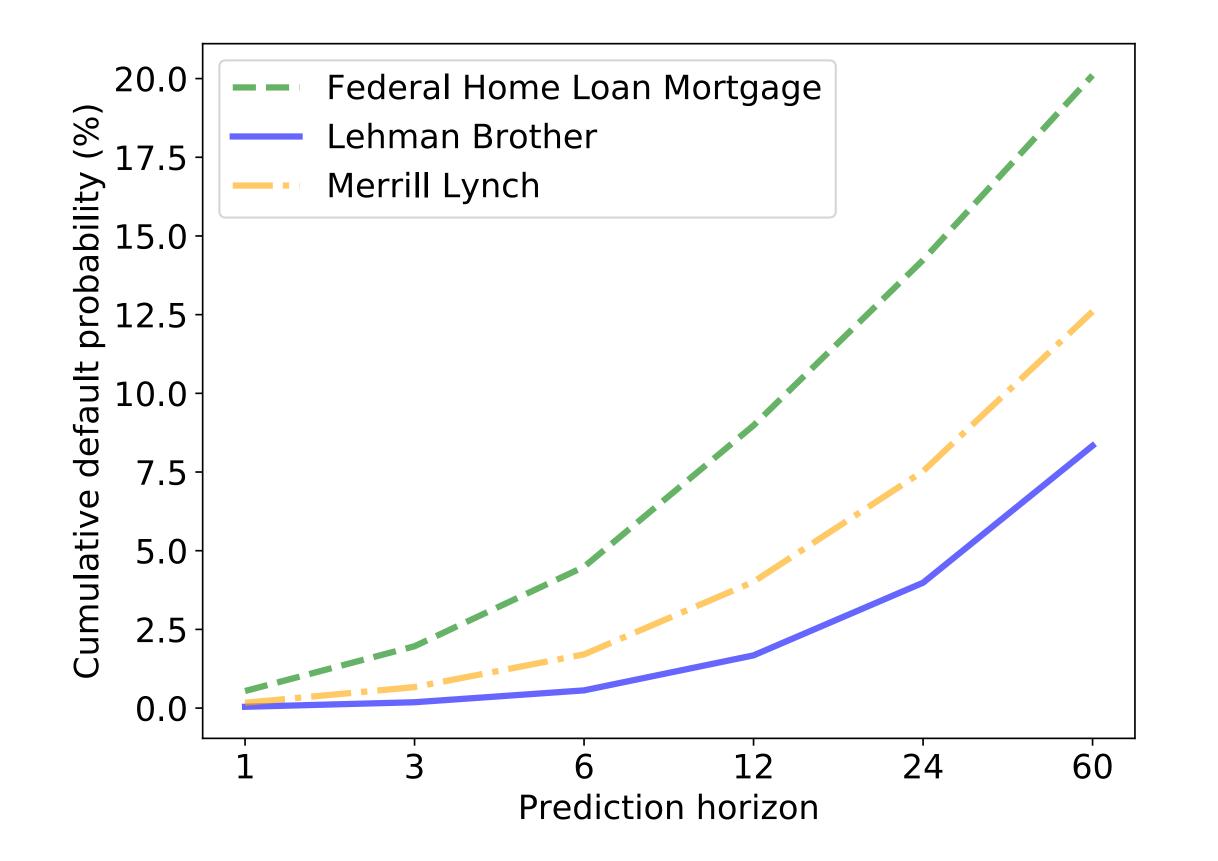
Credit risk

Credit risk

Default risk

Obligor

Default risk A term structure of cumulative default probabilities (CDP)

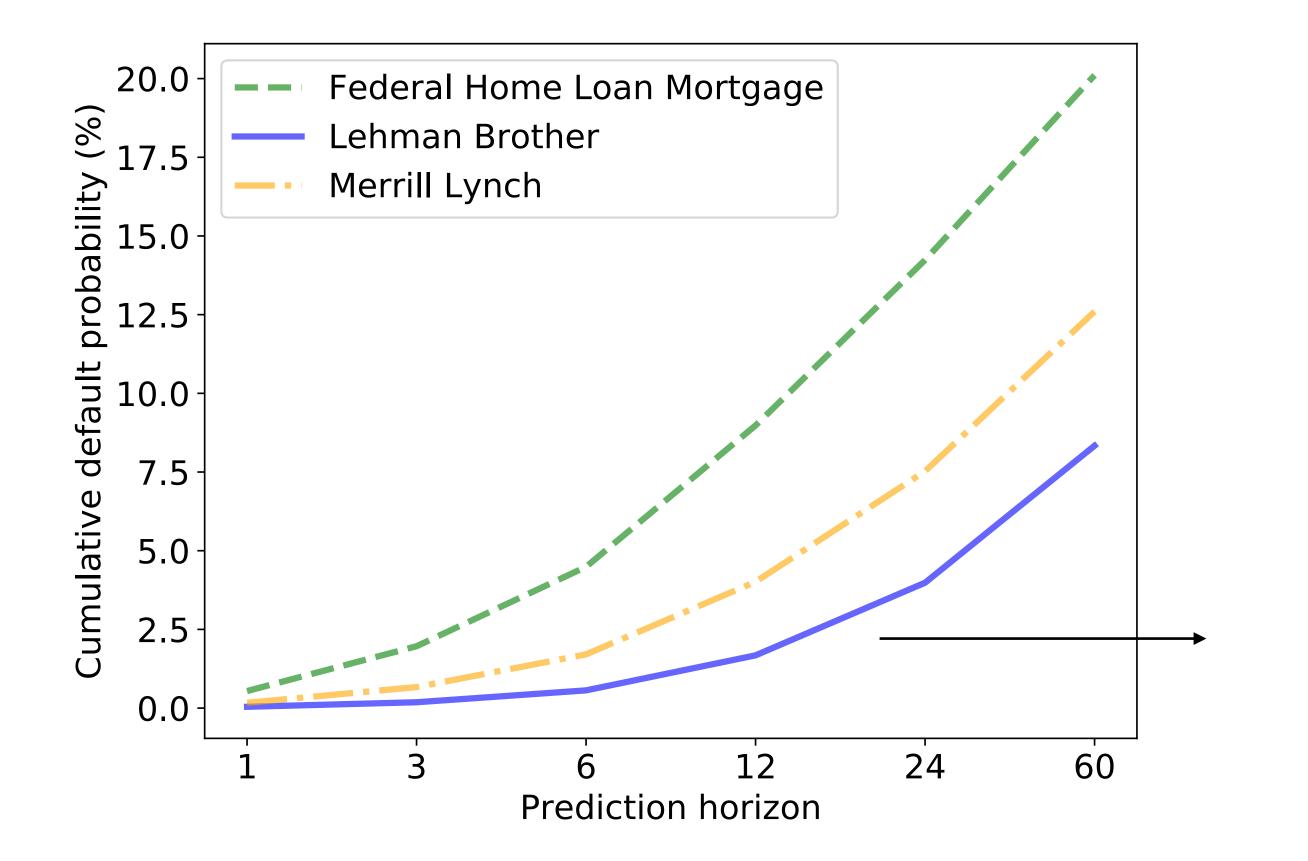


Debts structure

- Short-term
- Long-term

Dissimilar with each other

Default risk A term structure of cumulative default probabilities (CDP)



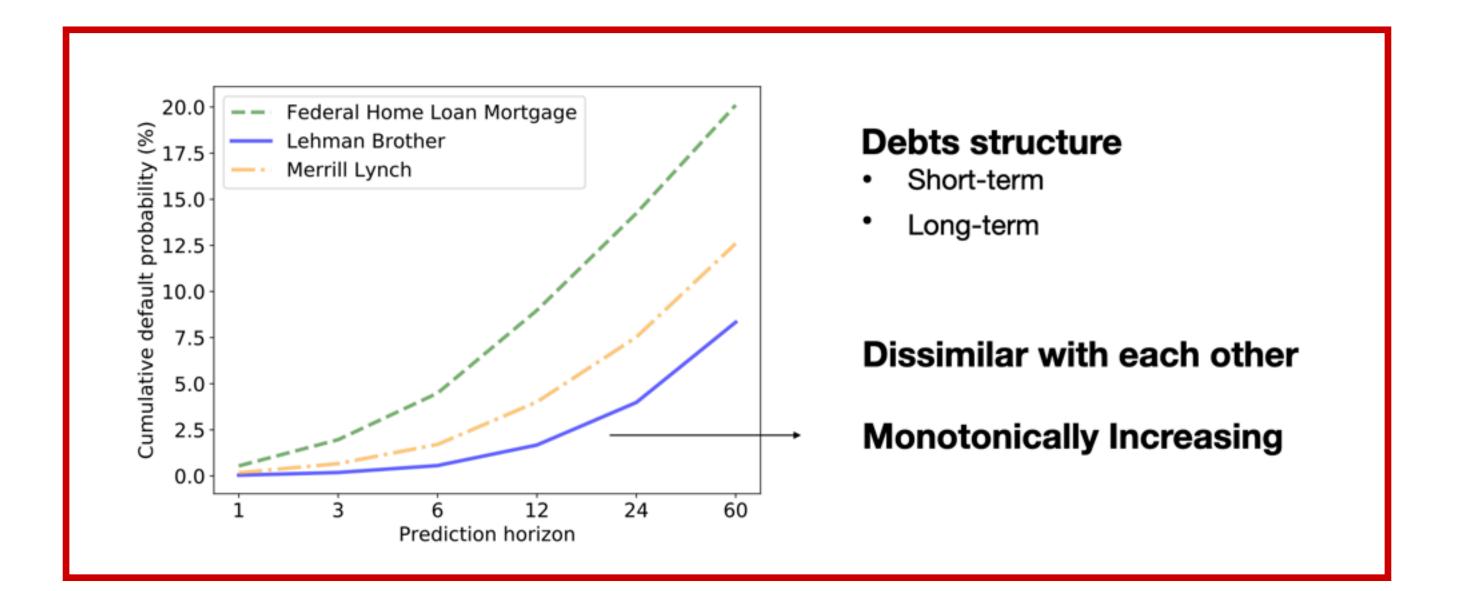
Debts structure

- Short-term
- Long-term

Dissimilar with each other

Monotonically Increasing

Default risk A term structure of cumulative default probabilities (CDP)



Multiperiod default prediction

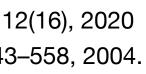
Multiperiod corporate default prediction

Machine learning

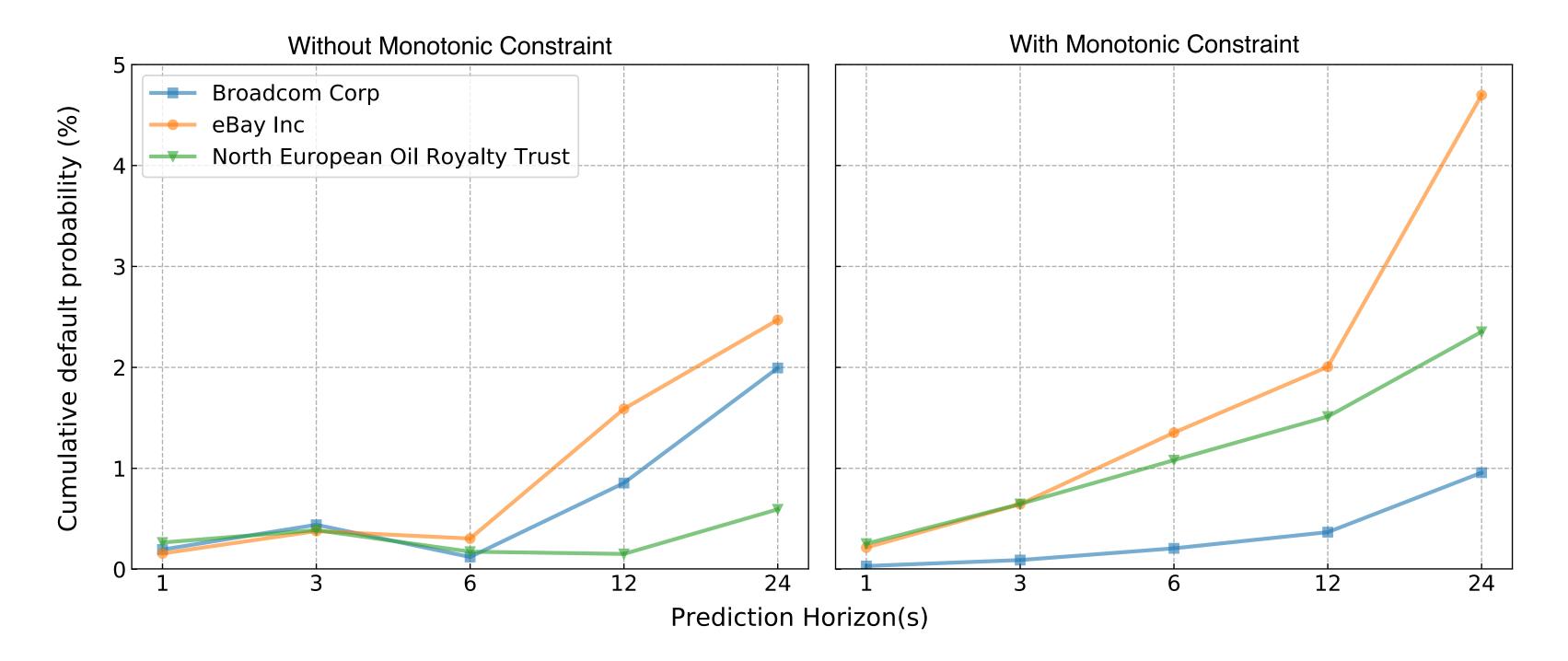
Hyeongjun Kim, Hoon Cho, and Doojin Ryu. Corpo- rate default predictions using machine learning: Liter- ature review. Sustainability, 12(16), 2020 Zan Huang, Hsinchun Chen, Chia-Jung Hsu, Wun- Hwa Chen, and Soushan Wu. Credit Rating Analysis with Support Vector Machines and Neural Networks: A Market Comparative Study. Decision Support Systems, 37(4):543-558, 2004.

Risk classification (e.g. 3-months, 6 months)

Risk rankings



Machine learning



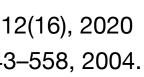
Hyeongjun Kim, Hoon Cho, and Doojin Ryu. Corpo- rate default predictions using machine learning: Liter- ature review. Sustainability, 12(16), 2020

Zan Huang, Hsinchun Chen, Chia-Jung Hsu, Wun- Hwa Chen, and Soushan Wu. Credit Rating Analysis with Support Vector Machines and Neural Networks: A Market Comparative Study. Decision Support Systems, 37(4):543–558, 2004.

Risk classification (e.g. 3-months, 6 months)

Risk rankings

E.g. multi-period



Machine learning

Statistical

FIM

Jin-Chuan Duan, Jie Sun, and Tao Wang. Multiperiod Corporate Default PredictionA forward Intensity Ap- proach. Journal of Econometrics, 170(1)(1):191–209, 2012.

Risk classification (e.g. 3-months, 6 months)

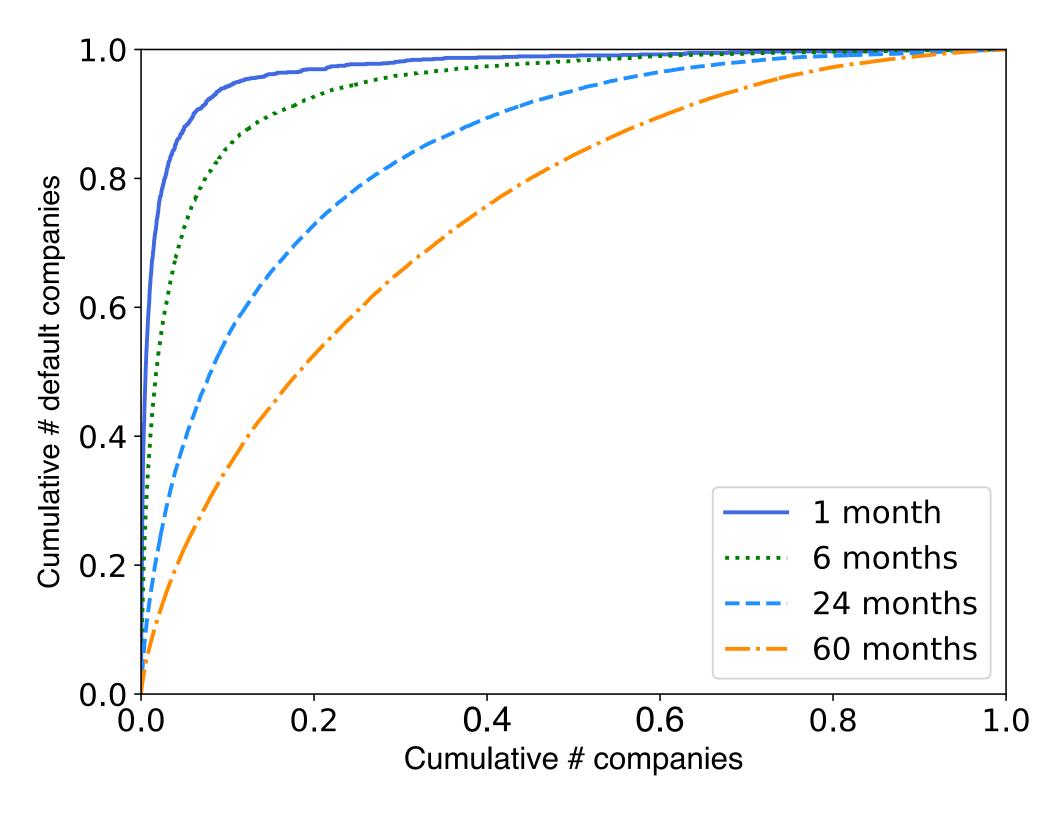
Risk rankings

A consistent term structure **Real world applications**

E.g. multi-period

A term structure of CDP

Related works

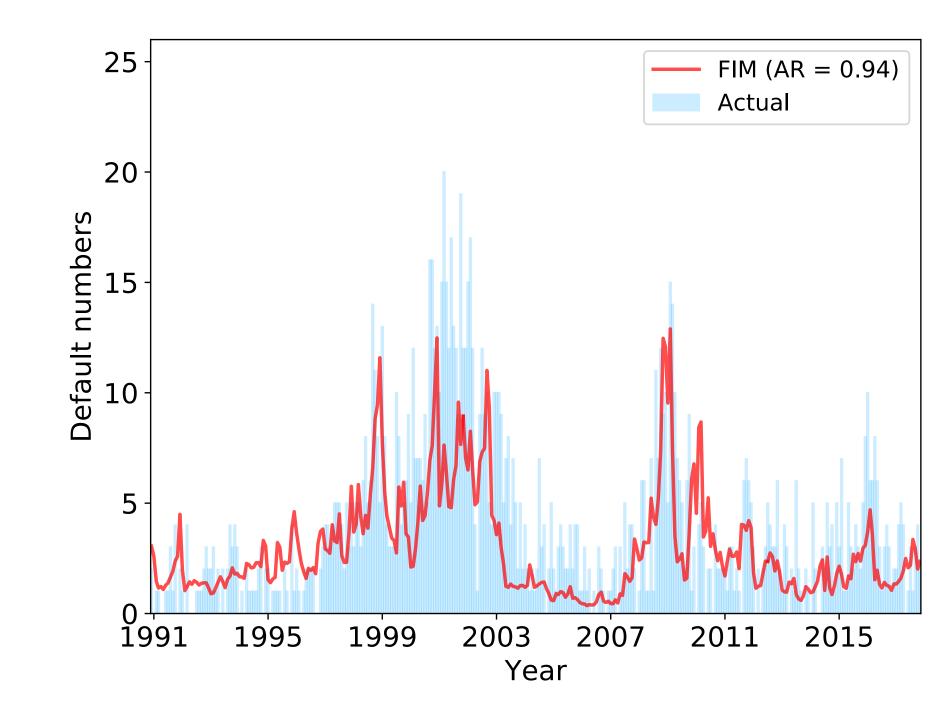


CAP Curve

Jin-Chuan Duan, Jie Sun, and Tao Wang. Multiperiod Corporate Default PredictionA forward Intensity Ap- proach. Journal of Econometrics, 170(1)(1):191–209, 2012.

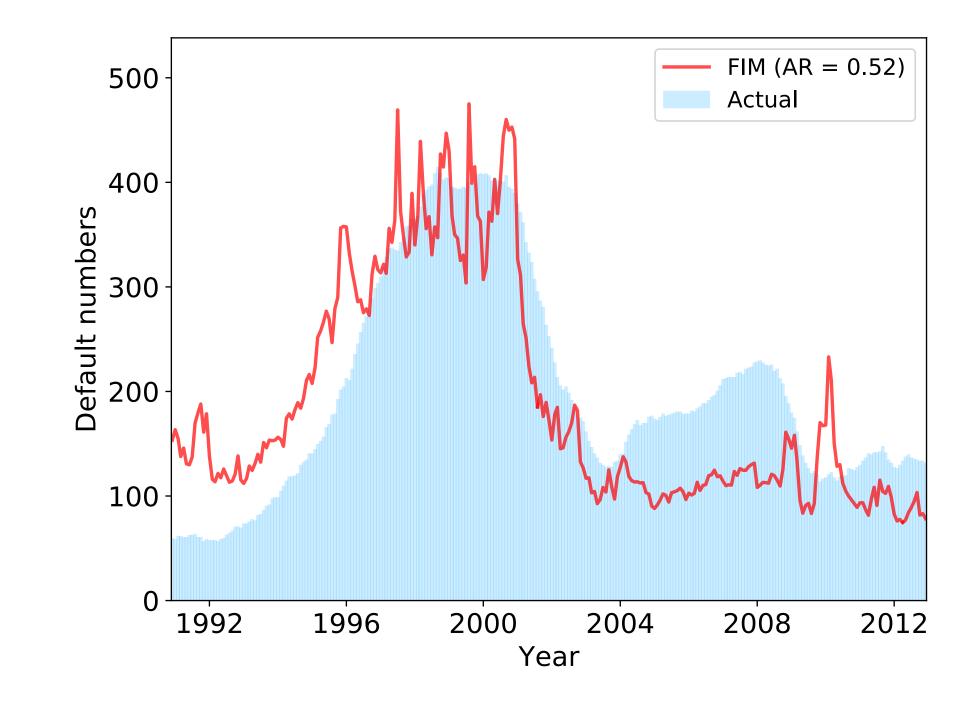
performance deteriorates rapidly

Related works



Prediction horizon: 1 month

Jin-Chuan Duan, Jie Sun, and Tao Wang. Multiperiod Corporate Default PredictionA forward Intensity Ap- proach. Journal of Econometrics, 170(1)(1):191–209, 2012.



Prediction horizon: 60 months

Machine learning

Statistical

FIM

Risk classification (e.g. 3-months, 6 months)

Risk rankings

A consistent term structure **Real world applications** E.g. multi-period

A term structure of CDP

Number of default occurrences

Rigorous assumption

E.g. same parametric family for both long-term and short-term

Related works Niche of each type of approaches

Machine learning

Rigorous assumption

E.g. same parametric family for both long-term and short-term

Statistical

Risk classification (e.g. 3-months, 6 months)

Risk rankings

A consistent term structure Real world applications E.g. multi-period

A term structure of CDP

Related works Leverage big data

Machine learning

Rigorous assumption

E.g. same parametric family for both long-term and short-term

Statistical

FIM

Risk classification (e.g. 3-months, 6 months)

Risk rankings

A consistent term structure Real world applications E.g. multi-period

A term structure of CDP

Related works Special model

Machine learning

Rigorous assumption E.g. same parametric family

for both long-term and short-term

Risk classification (e.g. 3-months, 6 months)

Risk rankings

A consistent term structure **Real world applications** E.g. multi-period

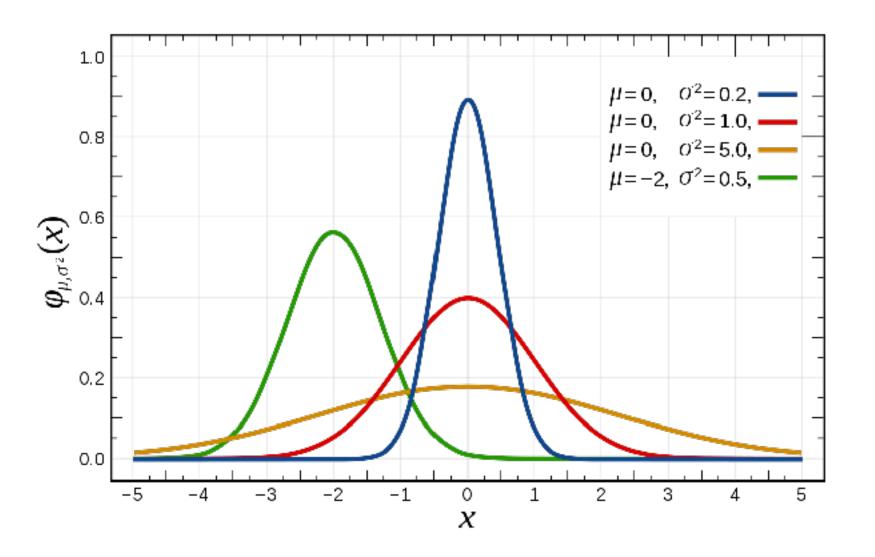
Design a special model

A term structure of CDP

Methodology Neural Parametric Family Learning

Parameters

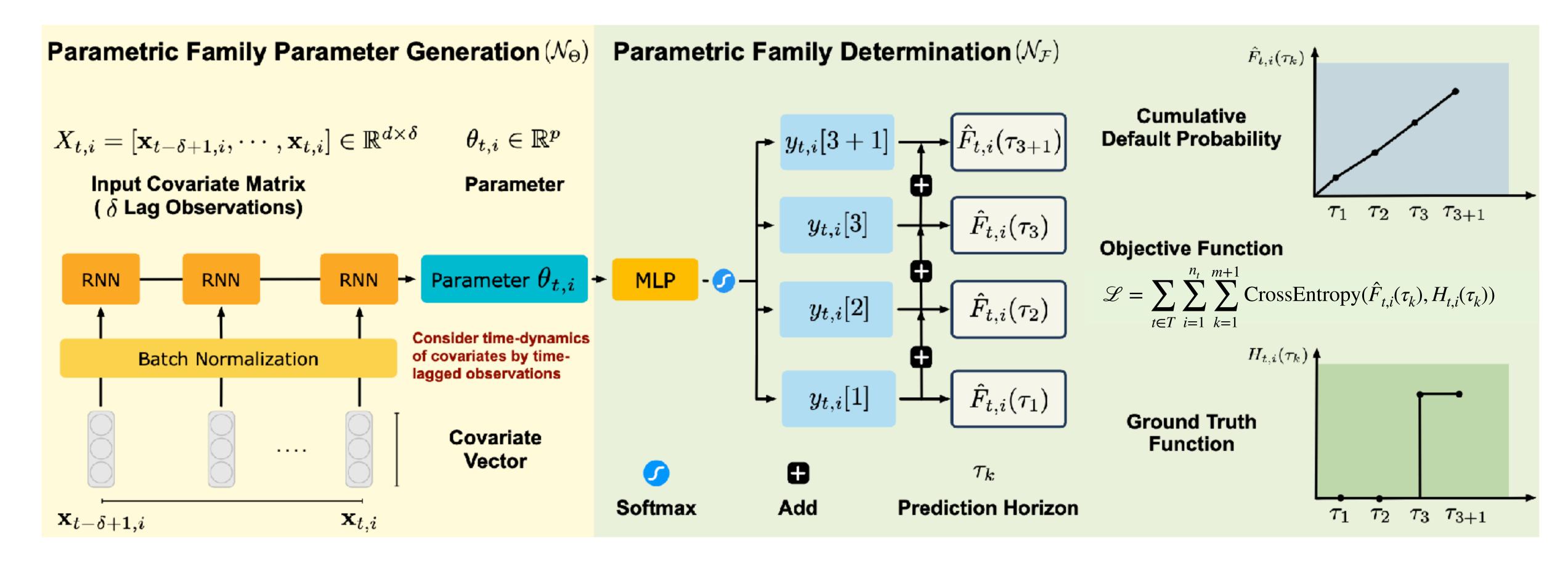
Mean Standard Deviation



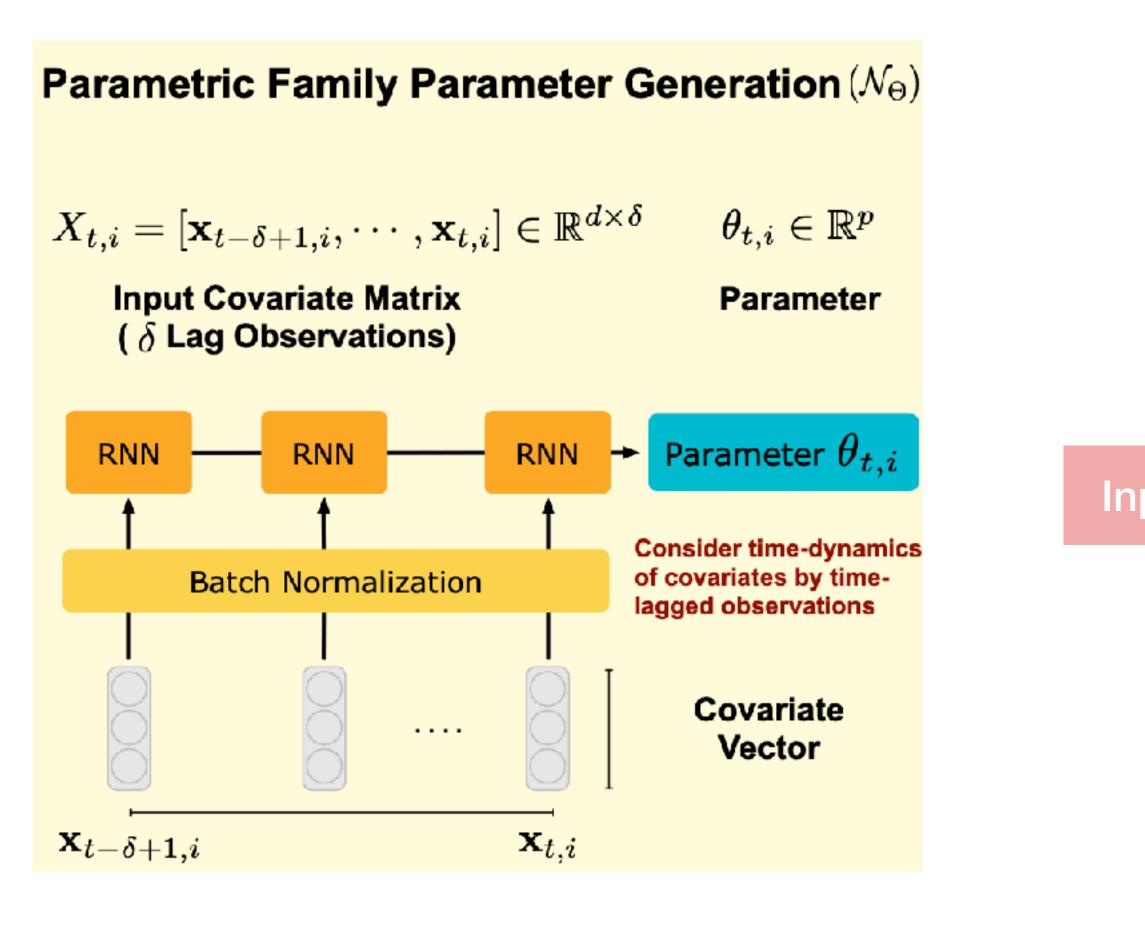
Parametric Family

Normal distribution Pdf Cdf

Methodology Two phase

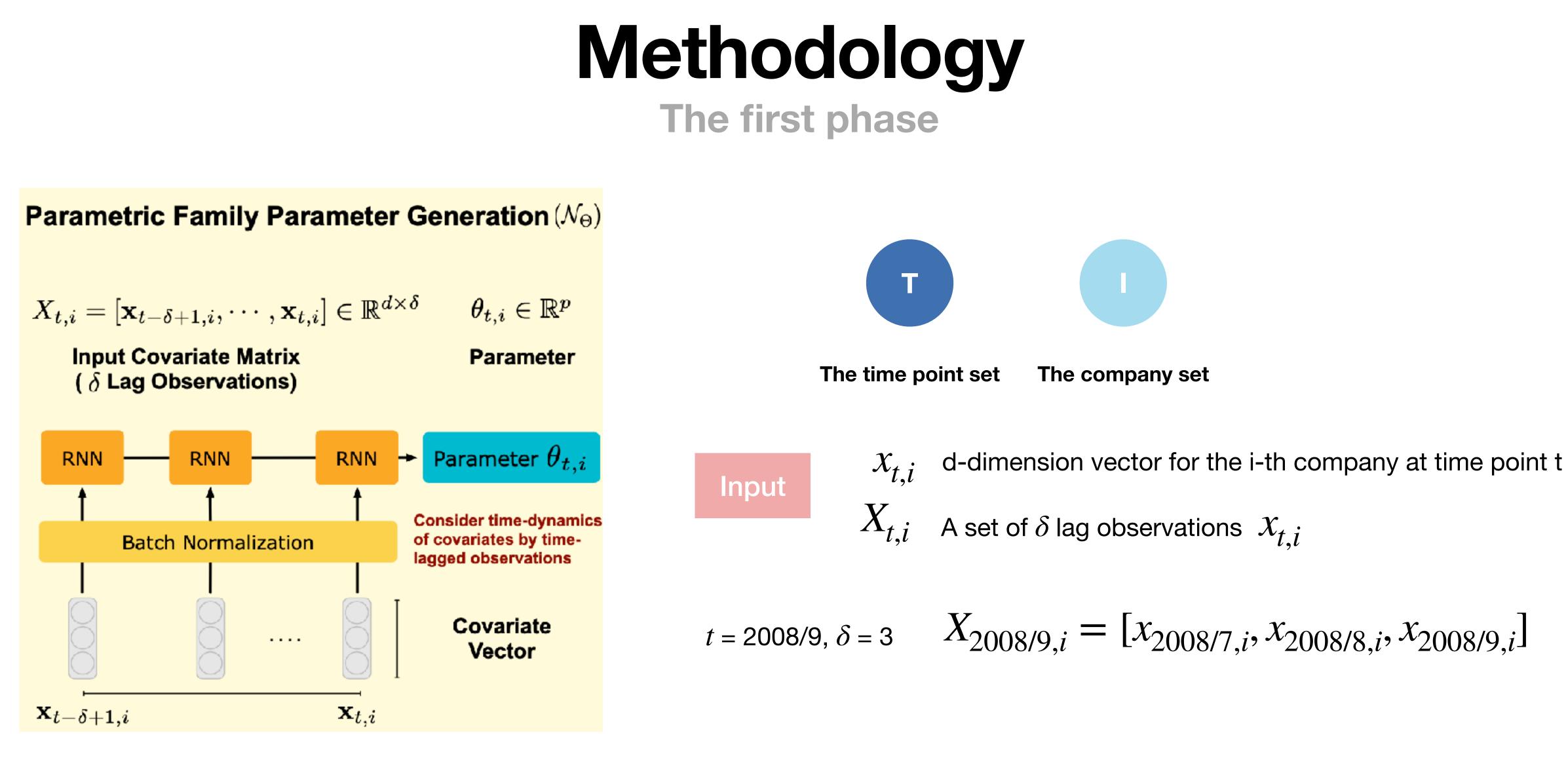


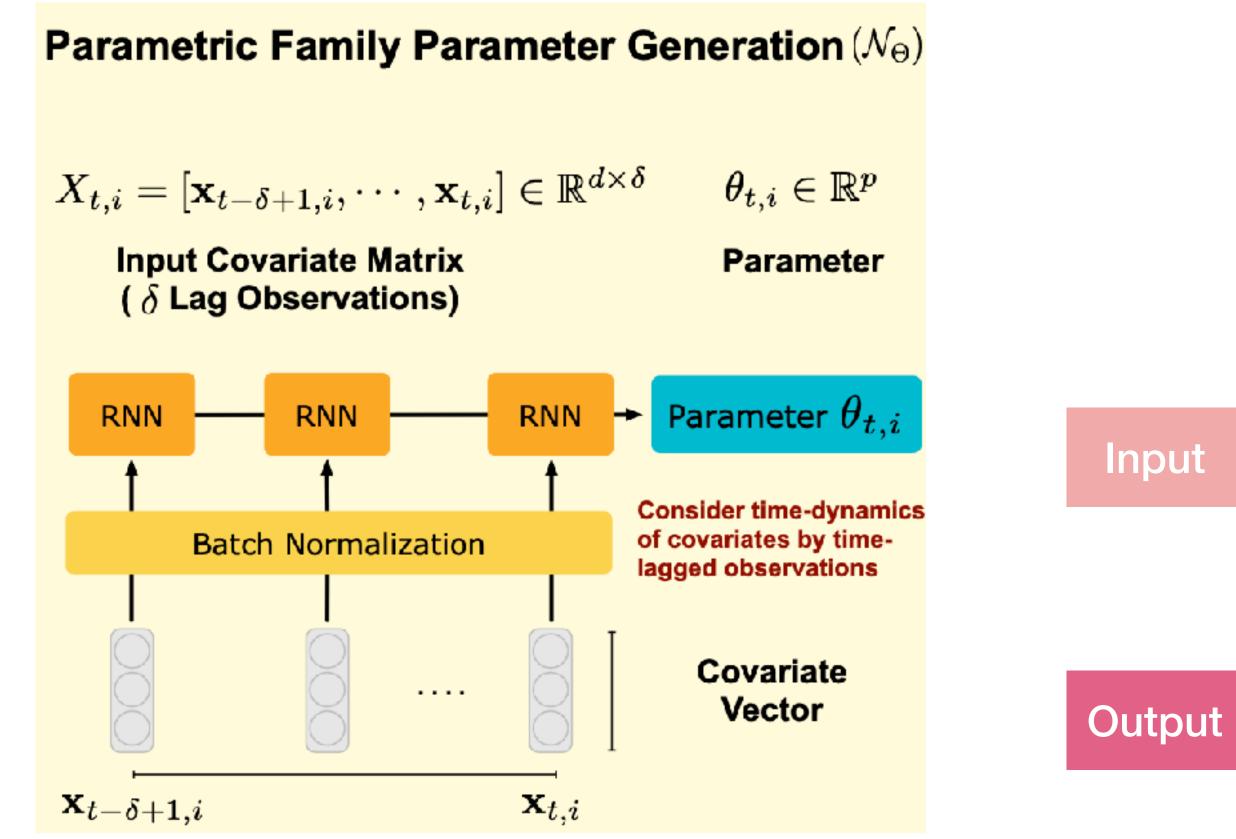
Methodology The first phase

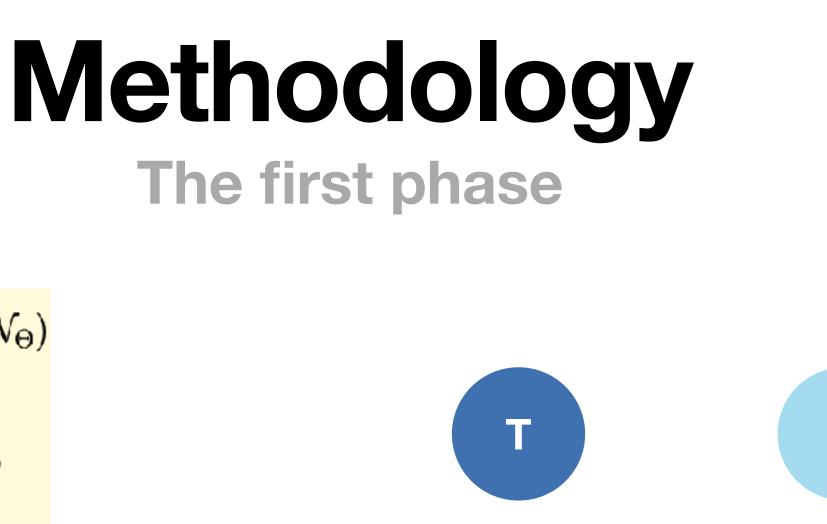


The time point set The company set

 $X_{t,i}$ d-dimension vector for the i-th company at time point t $X_{t,i}$ A set of δ lag observations $X_{t,i}$





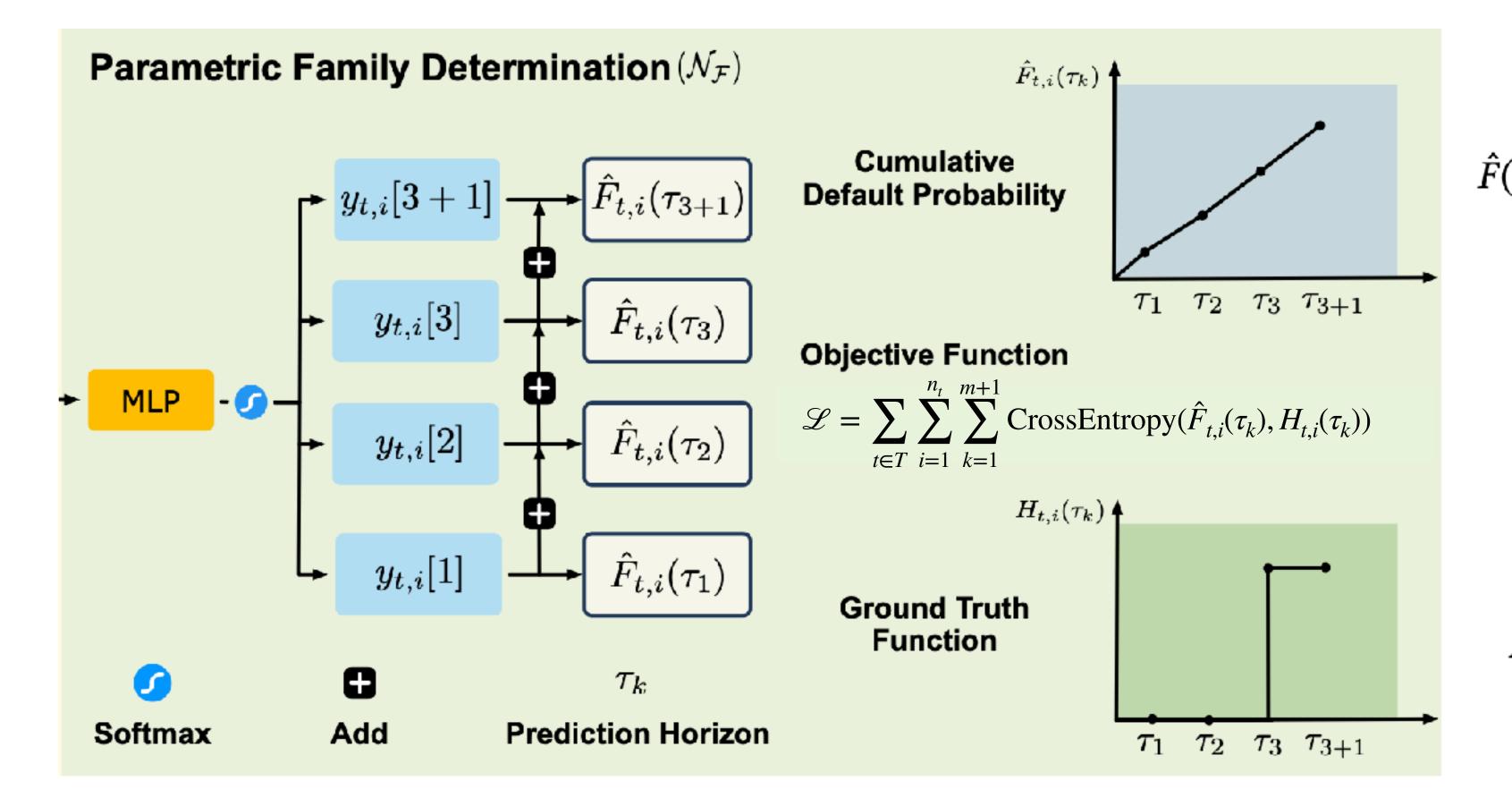


The time point set The company set

d-dimension vector for the i-th company at time point t $X_{t,i}$ $X_{t,i}$ A set of δ lag observations $X_{t,i}$

 $\theta_{t,i}$ p-dimension vector for the i-th company at time point t

Methodology The second phase



$$(\tau_{\ell}) = \sum_{k=1}^{\ell} y[k], \text{ for } \ell = 1, 2, \cdots, m+1$$

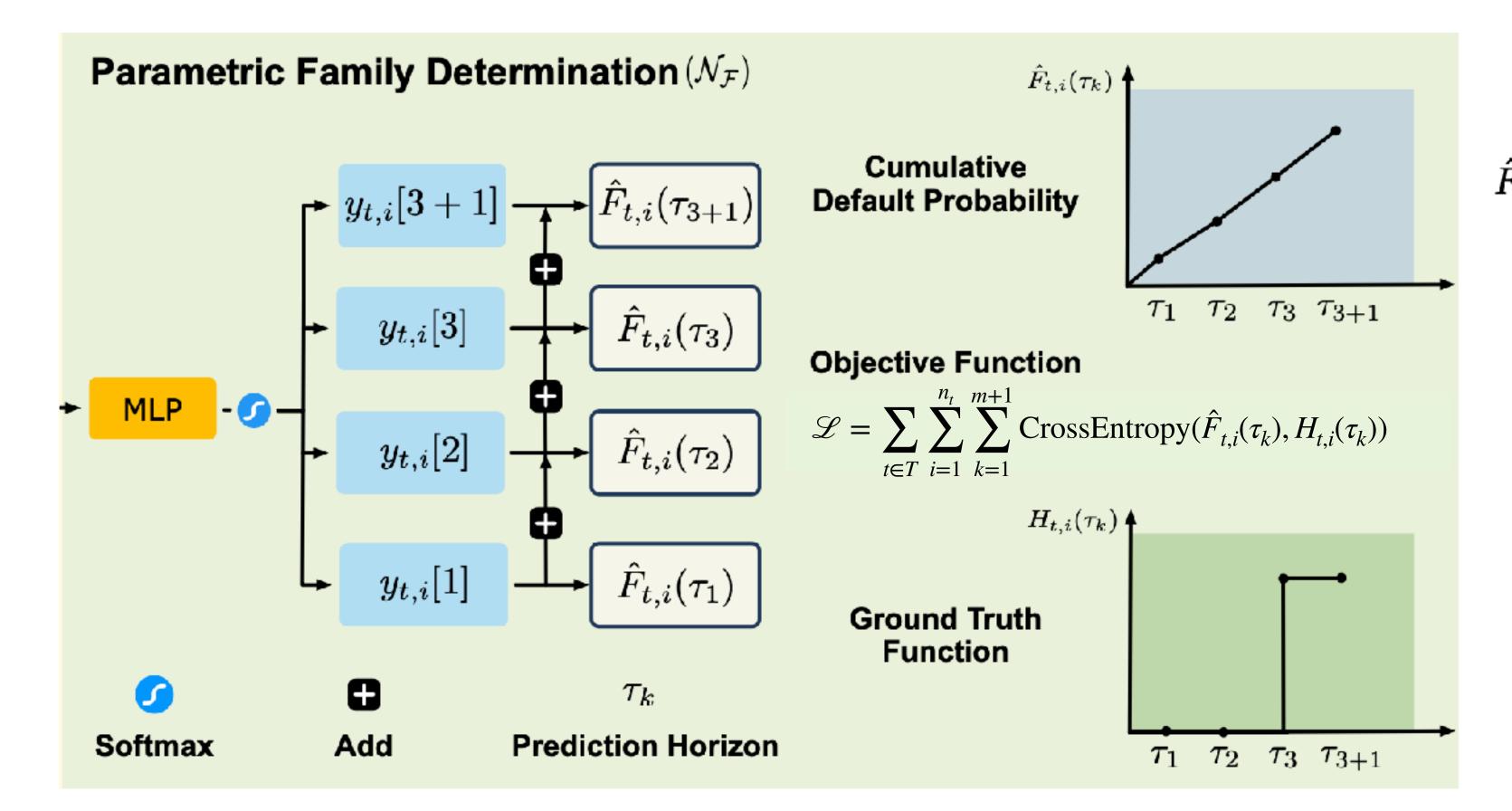
Marginal default probability

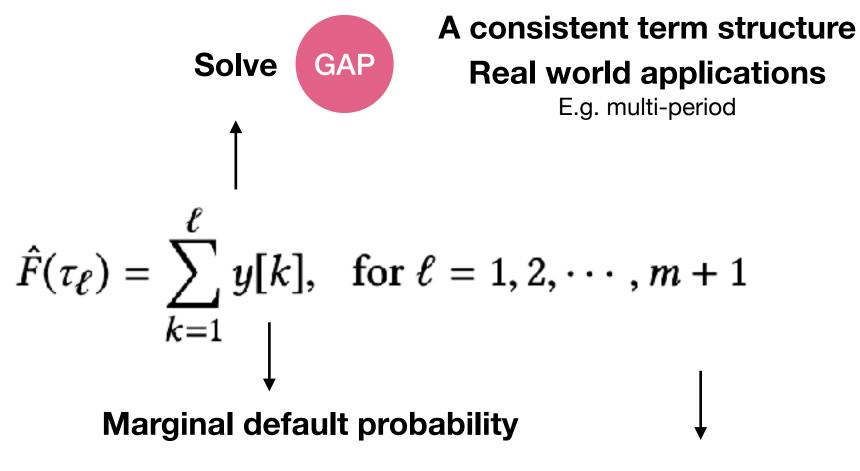
The company can not survive forever

$$H_{t,i}(s) = \begin{cases} 1, & \text{if } s \ge \zeta_i \\ 0, & \text{if } s < \zeta_i \end{cases}$$

The time of the default

Methodology The second phase





The company can not survive forever

$$H_{t,i}(s) = \begin{cases} 1, & \text{if } s \ge \zeta_i \\ 0, & \text{if } s < \zeta_i \end{cases}$$

The time of the default

Dataset **NUS Credit Research Initiative (CRI)**

Dates: January 1990 - December 2017 **Events:** 0 (alive), 1 (default), 2 (other exit) **Prediction horizons:** 60 months

Data: 1.5 M monthly samples of US public companies **Covariates:** 14, 2 common and 10 firm-specific covariates

Cross-sectional: randomly split data into 13 folds

Experiment **Two types**

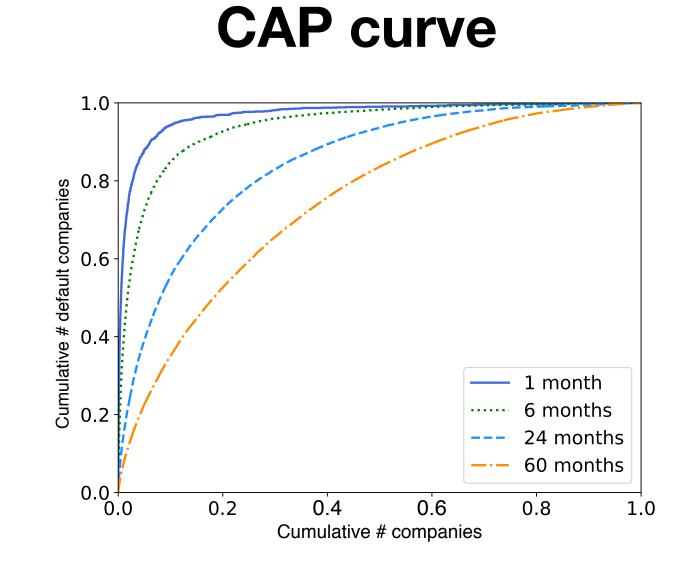
Train	Test		
1990 - 1999	2000		
1991 - 2000	2001		
2002 - 2011	2012		

Accuracy ratio (AR, %)

Order

 $AR = \frac{\text{Area above CAP curve}}{1}$ Area under CAP curve

Metrics



 D_i

Estimated default occurrences (monthly)

Default occurrences (monthly)

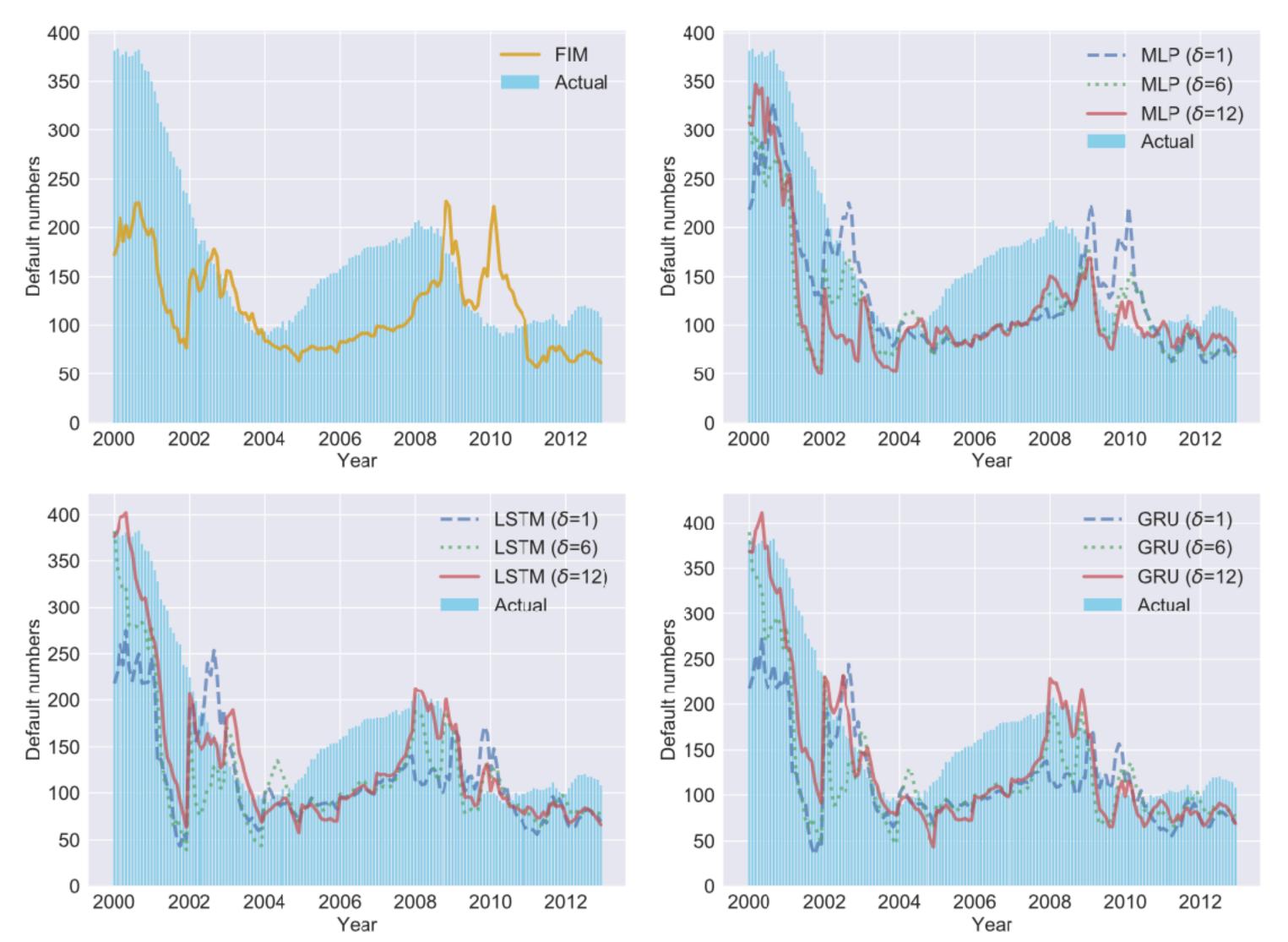
Results

Table 1:	Resu	lts of	cross	-secti	onal (exper	iment	S	
Horizons (months)	1	3	6	12	24	36	48	60	
Panel A	anel A Accuracy ratio (AR) (%)								
FIM	94.57	92.37	88.74	81.45	70.85	63.46	58.33	53.37	
MLP ($\delta = 1$)	94.48	92.85	90.43	85.10	75.63	68.08	62.87	58.26	
MLP $(\delta = 6)$	94.29	92.76	90.47	85.73	76.88	69.73	64.55	60.07	
MLP ($\delta = 12$)	93.99	92.64	90.55	86.05	77.67	70.81	65.93	61.45	
LSTM $(\delta = 1)$	94.78	93.17	90.87	86.11	77.47	70.69	65.70	61.09	
LSTM $(\delta = 6)$	94.63	93.29	91.23	87.05	79.00	72.63	67.55	62.96	
LSTM ($\delta = 12$)	94.68	93.48	91.77	87.91	80.79	74.76	69.91	65.32	
$\overline{\text{GRU}}$ $(\delta = 1)$	94.66	93.03	90.77	85.94	77.21	70.34	65.39	60.79	
GRU $(\delta = 6)$	94.41	92.97	90.84	86.54	78.26	71.60	66.45	61.91	
GRU ($\delta = 12$)	94.26	92.94	91.12	86.98	79.22	72.77	67.80	63.27	
Improvement $(\%)$	0.22	1.20	3.41	7.93	14.03	17.81	19.85	22.39	
Panel B	Root	mean squ	uare norr	nalized e	rror (RM	ISNE)			
FIM	0.74	0.64	0.62	0.84	1.23	1.18	1.06	0.96	
MLP $(\delta = 1)$	0.63	0.58	0.62	0.88	1.03	1.30	1.24	1.11	
MLP $(\delta = 6)$	0.64	0.58	0.61	0.86	1.23	1.32	1.26	1.12	
MLP ($\delta = 12$)	0.63	0.57	0.60	0.83	1.21	1.27	1.17	1.03	
LSTM $(\delta = 1)$	0.62	0.60	0.64	0.89	1.26	1.30	1.23	1.11	
LSTM $(\delta = 6)$	0.64	0.61	0.62	0.86	1.23	1.25	1.19	1.07	
LSTM ($\delta = 12$)	0.64	0.62	0.61	0.81	1.11	1.12	1.03	0.90	
GRU $(\delta = 1)$	0.61	0.61	0.65	0.91	1.25	1.32	1.23	1.11	
GRU $(\delta = 6)$	0.64	0.63	0.64	0.87	1.24	1.29	1.22	1.11	
GRU ($\delta = 12$)	0.64	0.64	0.64	0.83	1.13	1.18	1.10	0.98	
Improvement $(\%)$	17.57	10.94	3.23	3.57	9.76	5.08	2.83	6.25	

Results

Table 2: Results of cross-time experiments								
Horizons (months)	1	3	6	12	24	36	48	60
Panel A	Panel A Accuracy ratio (AR) (%)							
FIM	94.08	91.86	87.74	81.88	74.86	69.20	64.40	59.61
MLP $(\delta = 1)$	93.69	91.76	89.26	84.92	78.06	72.16	67.30	62.63
MLP $(\delta = 6)$	93.30	91.52	89.10	85.05	78.44	72.48	67.45	62.72
$\mathrm{MLP}(\delta=12)$	92.77	91.11	88.78	85.05	78.61	72.81	67.92	63.21
LSTM $(\delta = 1)$	93.67	92.03	89.54	85.45	78.67	72.88	67.89	63.38
LSTM $(\delta = 6)$	93.46	91.84	89.41	85.43	78.70	72.87	67.90	63.26
LSTM ($\delta = 12$)	92.81	91.27	88.96	85.27	78.57	72.79	67.70	62.77
GRU ($\delta = 1$)	93.54	91.87	89.53	85.53	78.63	72.79	68.05	63.49
GRU $(\delta = 6)$	93.48	91.91	89.51	85.45	78.65	72.83	67.86	63.25
GRU ($\delta = 12$)	93.03	91.45	89.26	85.34	78.76	72.89	67.98	63.35
Improvement (%)	0	0.19	2.05	4.46	5.21	5.33	5.67	6.51
Panel B	Root	mean squ	iare norr	nalized e	rror (RM	ISNE)		
FIM	1.09	0.77	0.51	0.47	0.40	0.36	0.39	0.39
MLP $(\delta = 1)$	0.83	0.60	0.43	0.44	0.38	0.34	0.35	0.34
MLP $(\delta = 6)$	0.73	0.60	0.40	0.40	0.34	0.33	0.35	0.33
MLP $(\delta = 12)$	0.72	0.62	0.40	0.37	0.34	0.31	0.32	0.32
LSTM $(\delta = 1)$	1.00	0.67	0.43	0.40	0.37	0.34	0.35	0.35
LSTM $(\delta = 6)$	0.82	0.64	0.41	0.38	0.32	0.32	0.33	0.31
LSTM ($\delta = 12$)	0.97	0.61	0.34	0.33	0.28	0.26	0.27	0.25
GRU ($\delta = 1$)	1.08	0.69	0.41	0.39	0.36	0.34	0.34	0.33
GRU $(\delta = 6)$	0.86	0.60	0.39	0.36	0.32	0.32	0.32	0.31
GRU $(\delta = 12)$	1.14	0.60	0.34	0.28	0.26	0.26	0.26	0.26
Improvement $(\%)$	33.95	22.08	33.33	40.43	35.00	27.78	33.33	35.90

Results 48-month prediction horizon



Conclusion

Multiperiod default prediction

Real world practical scenarios

A term structure of monotonically increasing CDP Default occurrences

Outperform the SOTA

