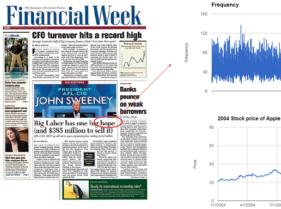


On the Construction and Analysis of Financial Time-Series-Oriented Lexicons

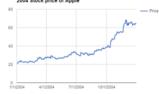
Cheng-Yi Lai,¹ Chuan-Ju Wang,¹ Ming-Feng Tsai² ¹University of Taipei, Taipei, Taiwan ²National Chengchi University, Taipei, Taiwan

June 22, 2015

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで


- 2 Methodology
- **3** Preliminary Experiments
- 4 Conclusions and Future work

- 2 Methodology
- 3 Preliminary Experiments
- 4 Conclusions and Future work



- Frequency

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

Date

- Text analytics refers to the process of deriving high-quality information from textual information.
- Widely applied to many fields:
 - Biomedicine
 - Finance
 - Social science
- Usage of textual analysis in Finance
 - News articles¹
 - Financial reports²
 - User tweets about publicly-traded companies³

¹Robert and Chen (2009), TOIS ²Wang and Tsai (2013), ECIR ³Yuexin et.al. (2013), SNAKDD

- Sentiment lexicon is a very important resource and can be various in different fields.
- First sentiment lexicon in finance is proposed by Loughran and McDonald (2011) in *Journal of Finance*.

- This lexicon has been widely used in several financial problems.
 - Financial risk prediction¹
 - Stock movement prediction

¹Wang and Tsai (2013), ECIR

- However, the financial sentiment lexicon has the following limitations.
 - **1** The lexicon is constructed via only the 10-K financial reports.
 - The wording is formal.
 - Words used in different sources cannot be recognized.
 - \rightarrow E.g., news articles and social networks
 - 2 The lexicon has no explicit link with the targets of prediction problems.
 - May cause the difficulty in analyzing the obtained prediction models.

- We propose a novel framework to build a time-series-oriented lexicon.
 - Cover different types of sources
 - Have explicit links with the targets of prediction problems

Help us build a lexicon to capture more target-oreinted information

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- 2 Methodology
- 3 Preliminary Experiments
- 4 Conclusions and Future work

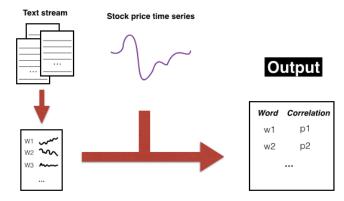


Figure : Framework

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Text stream

- The text steam: The New York Times Annotated Corpus¹ (from 1/1/2004 to 12/31/2006)
- 2 Use Lemur to index the text stream
 - Stop words, e.g., a ,an, the ,....
 - Stermmer: (Buy , Bougtht , Buying) ► Buy
- 3 Obtain the time series of each word's frequencies

Stcok time series

The stock time series: WRDS² (from 1/1/2004 to 12/31/2006)

2 Daily stock prices of each company

¹https://catalog.ldc.upenn.edu/LDC2008T19 ²https://wrds-web.wharton.upenn.edu/wrds/

2004 Stock price of Apple

Saint Frequency of 2004

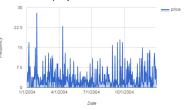
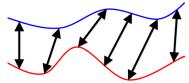


Figure : Stock prices of Apple Figure : "Saint" word frequency

Pearson product-moment correlation coefficient:

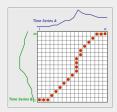
- Stock price of a company: X
- Word frequency of a certain word: Y

Pearson Correlation:


$$\rho_{X,Y} = cor(X,Y) = \frac{COV(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X \sigma_Y}$$

- Low correlation problem:
 - Shifted
 - Stretched

Solution: Dynamic Time wraping


dynamic time warping

Dynamic Time wraping

Dynamic time warping (DTW) is an algorithm for measuring similarity between two temporal sequences which may vary in time or speed.

$$DTW(X, Y) = C_p * (X, Y)$$

= min{C_p(X, Y), p \in P^{N*M}}
= D(N, M)

^rrequency


2004 Stock price of Apple

Saint Frequency of 2004

Correlation = 0.146451

Correlation = 0.902166

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

- 2 Methodology
- 3 Preliminary Experiments
- 4 Conclusions and Future work

Dataset:

Text stream: The New York Times Annotated Corpus

- From 1/1/2004 to 12/31/2006
- #Unique terms: 368509
- #Documents: 1096
- Stock time series: WRDS
 - From 1/1/2004 to 12/31/2006
 - Four companies: Apple, Microsoft, Starbucks, Amazon

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

execution

patal

Amazon

イロト イポト イヨト イヨト ヨー のくや

◆□ > ◆圖 > ◆臣 > ◆臣 > 善臣 - のへで

- 2 Methodology
- 3 Preliminary Experiments
- 4 Conclusions and Future work

1 We purpose a framework to construct a target-orient lexicon.

It contains all the highly correlation words with target stock prices.

◆□ ▶ ◆帰 ▶ ◆ ヨ ▶ ◆ ヨ ▶ ● の Q @

- 2 For future work, we will validate the resulting lexicons by the task of
 - Predicting stock price rise or fall
 - Predicting financial risk