

Corporate Default Prediction via Deep Learning

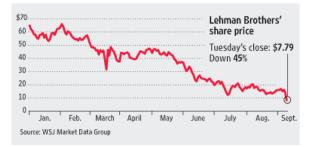
Shu-Hao Yeh,¹ Chuan-Ju Wang,¹ Ming-Feng Tsai² ¹University of Taipei, Taipei, Taiwan ²National Chengchi University, Taipei, Taiwan

July 1, 2014

(日)、(型)、(E)、(E)、(E)、(O)()

- 2 Methodology
- 3 Experiments
- 4 Conclusion

- 2 Methodology
- 3 Experiments
- 4 Conclusion



◆□ → ◆□ → ◆三 → ◆三 → ○○ ◆ ○ ◆ ○ ◆

Lehman Brothers

Company ÷	Filing date \$	Total Assets pre-filing +	Assets adjusted to the year 2012	Filing court district	¢
Lehman Brothers Holdings Inc.	2008-09- 15	\$639,063,000,800	\$700 billion	NY-S	

Introduction

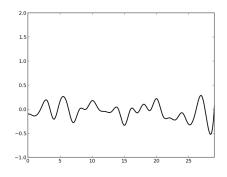
◆□ ▶ ◆帰 ▶ ◆ ヨ ▶ ◆ ヨ ▶ ● の Q @

Classical statistical models

- Altman's model, Z-Score
- Ohlson's model, O-Score
- 2 Market-based models
 - KMV-Merton model
- 3 Machine learning models
 - Support vector machines
 - Artificial neural network

Feature Selection Problem

- What are good features?
 - 1 10-day moving average?
 - 2 Minimum stock price?
 - 3 Maximum stock price?
 - 4 Standard deviation of stock prices?


Deep learning

- 1 A machine learning method based on learning representations
 - \rightarrow Different concepts are learned from other concepts, with the more abstract, higher level concepts being learned from the lower level ones.
 - \rightarrow Deep learning helps to disentangle these abstractions and pick out which features are useful for learning.
- 2 Architectures: deep neural networks, convolutional deep neural networks, and deep belief networks.
 - \rightarrow Applied on computer vision, automatic speech recognition and natural language processing

- Main contributions
 - Transform discrete stock return time series to a graph representation

 $[-0.098684, -0.138686, 0.016949, \cdots, -0.365854, 0.076923]$

Main contributions

- 2 Adopt deep learning algorithms on the graphs for corporate default prediction
 - The stock returns of the default companies

to default

to default

(a) 30-days prior (b) 180-days prior (c) 360-days prior to default

The stock returns of the non-default companies

- 2 Methodology
- 3 Experiments
- 4 Conclusion

Daily stock return

$$r_t = \frac{S_t - S_{t-1}}{S_{t-1}}$$

$$S_{t-1} = \text{stock price at day } t - 1$$

$$S_t = \text{stock price at day } t$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Default prediction can be treated as a classification problem.

- Input: graphs of stock daily returns
- Output: 0 (non-default) and 1 (default)
- Algorithm: Deep Belief Network (DBN) (python toolkit: theano¹)

1 Introduction

2 Methodology

3 Experiments

4 Conclusion

- The daily stock returns of American publicly-traded companies are from the Center for Research in Security Prices of Wharton Research Data Services.²
 - From year 2001 to 2011

PERMNO	Date	Returns	
10001	20030102	0.088287	
10001	20030103	0.052500	
10001	20030106	-0.019121	
10001	20030107	0.004964	
10001	20030108	0.006024	

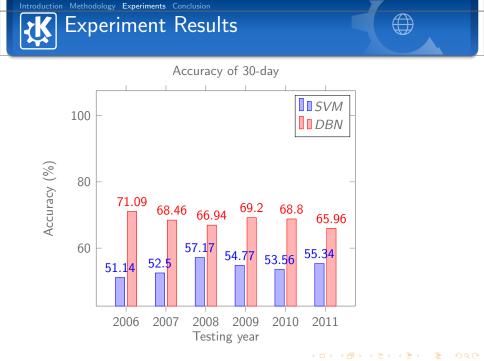
Dataset

Year	# of all companies	# of default companies	Prior_30	Prior_180	Prior_360
2001	8608	982	982	964	398
2002	7900	706	704	694	671
2003	7475	606	606	600	588
2004	7475	449	449	446	437
2005	7364	489	486	480	469
2006	7423	468	468	460	441
2007	7679	602	601	595	581
2008	7394	553	551	542	502
2009	7141	517	514	509	489
2010	7085	450	449	442	425
2011	7112	404	403	395	381

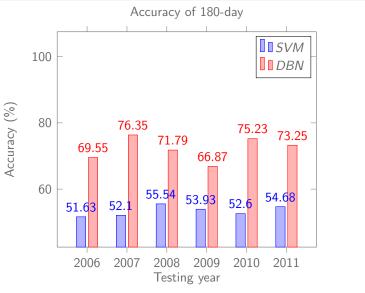
Prior_30: # of default companies having 30-day daily stock returns prior to default

- 2 Prior_180: # of default companies having 180-day daily stock returns prior to default
- 3 Prior_360: # of default companies having 360-day daily stock returns prior to default

For each year, we construct a balanced dataset for training.

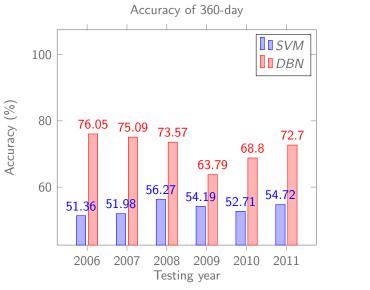

- Baseline (Classifier: Support Vector Classification via LIBSVM³)
 - Features:
 - **1** 30-day: prior to default 5, 10, 15, 30-days average returns
 - 2 180-day: prior to default 5, 10, 15, 30, 90, 180-days average returns
 - 3 360-day: prior to default 5, 10, 15, 30, 90, 180, 360-days average returns
 - The training data is composed of the record in a five-year period, the following year of which is the testing data.
 - e.g., 2001-2005 for training and 2006 for testing.

³http://www.csie.ntu.edu.tw/~cjlin/libsvm/ ←□→ ←♬→ ←≣→ ←≣→ ↓≣→ → ♀



Our experiments (Classifier: DBN via theano)

- The training data is composed of the record in a four-year period, the following year of which is the validation data, the next year is the testing data.
 - e.g., 2001-2004 for training, 2005 for validation, and 2006 for testing.



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�@

- 2 Methodology
- 3 Experiments
- 4 Conclusion

- This paper provides a new perspective on the default prediction problem using deep learning algorithms.
 - The representable factors of input data will no longer need to be explicitly extracted but can be implicitly learned by the learning algorithms.
 - We consider the stock returns of both default and solvent companies as input signals with graph representations, and use Deep Belief Networks to train the prediction models.
- In our experiments, the deep learning algorithm outperform better than traditionally machine learning algorithms.
- Future work: Identify and analyze the representation of the input signals.