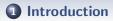


Post-Modern Portfolio Theory for Information Retrieval


Ming-Feng Tsai Department of Computer Science National Chengchi University Chuan-Ju Wang Department of Computer Science Taipei Municipal University of Education

1 / 15

INNS-WC 2012, October 3, 2012

Outline

2 The Mean-Semivariance Framework

3 Experiments

Conclusions and Future Work

Introduction

- The process of retrieving information consists of two phases:
 - Compute the relevance between a given user's information need and each of the documents in a collection.
 - Rank the documents according to the computed relevance scores.
- The classic Probability Ranking Principle (PRP) forms the theoretical basis of the 2nd phase.
 - Rank the documents with the order of decreasing probabilities of relevance to the query.

Uncertainty

- However, the PRP neglects the uncertainty associated with the relevance of the documents to the query.
- Examples of sources of uncertainty:
 - Specific user preferences.
 - Ambiguity within a query.
- Take the query "jaguar" as an example.
 - The Jaguar Cars company.
 - The Apple Jaguar operation system.
 - The Fender Jaguar electric guitar.
- An ideal Information Retrieval (IR) system should provide a ranking list of documents with all possible interpretations.

Modern Portfolio Theory

- In 1952, Harry Markowitz in his Nobel Prize work, proposed the Modern Portfolio Theory (MPT).
 - Attempt to select a set of stocks (portfolio) that maximize its total return for a given amount of risk.
- An analogy between the ranking problem in IR and the investing problem in finance.
 - Selecting a set of stocks (portfolio) resembles selecting a set of documents (ranking list).
 - The risk resembles the uncertainty.

Modern Portfolio Theory

- Wang and Zhu (2009)¹ first introduced MPT into the process of IR and formulated the ranking problem as a portfolio selection problem.
- Two statistics, mean and variance, are used to characterize a ranking list.
 - Mean: A best "guess" of the overall relevance of the list
 - Variance: The uncertainty associated with the guess
- For a risk-averse user, the relevance of a ranking list is maximized, and in the meantime, the variance of the relevance is minimized.

¹J. Wang, J. Zhu, Portfolio theory of information retrieval, *Proceedings of the* 32nd international ACM SIGIR, (2009), 115-122.

Our Approach

- However, the "variance" cannot distinguish a bad surprise (relevance score less than expectation) from a good surprise (relevance score more than expectation).
- Motivated by the concept of Post-Modern Portfolio Theory (PMPT), this paper proposes a mean-semivariance framework:
 - Only take bad surprises into account for risk-averse users.
 - Only consider good surprises for the risk-loving users.

Overall Relevance Scores

- Given a query, suppose an IR system returns a ranking list composed of n documents from rank 1 to n with corresponding estimated relevance scores from r_1 to r_n .
- The effectiveness of a ranking list is defined as

$$R_n = \sum_{i=1}^n w_i r_i.$$

- In general, $w_1 > w_2 \cdots > w_n$
- Then, R_n can be maximized with $r_1 > r_2 \cdots > r_n$.

Uncertainty of Relevance Scores

- The relevance scores r_i are assumed to be random variables.
- The uncertainty of the overall relevance is characterized with its variance $Var(R_n)$:

$$Var(R_n) = \sum_{i=1}^n \sum_{i=1}^n w_i w_j c_{i,j},$$

• $c_{i,j}$ denotes the covariance of the relevance scores between the *i*-th ranked document and the *j*-th ranked one.

9 / 15

Semivariance

- As mentioned, however, this variance cannot distinguish a bad surprise from a good surprise.
- We use semivariance as the indicator of uncertainty, which can be defined as follows:

$$Var_{-}(R_{n}) = E\left[\left(Min(R_{n} - E[R_{n}], 0)\right)^{2}\right],$$

$$Var_{+}(R_{n}) = E\left[\left(Max(R_{n} - E[R_{n}], 0)\right)^{2}\right],$$

- $Var_{-}(R_n)$: the downside variance of the overall relevance scores.
- $Var_+(R_n)$: the upside variance of the overall relevance scores.
- We use an approximation method to calculate these two indicators.²

²J. Estrada, Mean-semivariance optimization: a heuristic approach, *Journal of Applied Finance 18* (1), (2007), 57–72.

Optimization for the Ranking List

• To optimize the effectiveness of a ranking list, we define the objective function as

$$max E[R_n] + a \times Var_Q(R_n),$$

- where a denotes the risk preference parameter and $Q \equiv \operatorname{sgn}[a]$.
- Risk-averse: *a* < 0.
- **Risk-loving**: *a* > 0.
- When a = 0, documents are ranked by the PRP.
- A greedy algorithm is adopted to optimize the objective function.

Experiments

Settings

 Two NIST Text REtrieval Conference (TREC) tracks are used for evaluating the proposed method, including TREC08 and Robust04.

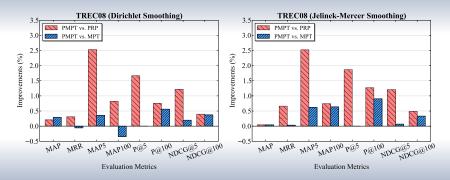
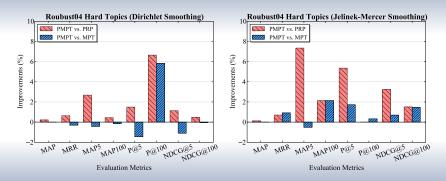

Name	Description	$\# \operatorname{Docs}$	# Topics
TREC8 ad hoc task	TREC disks 4, 5 minus CR	528,155	50
Robust2004 hard topics	TREC disks 4, 5 minus CR	528,155	50

Table : Overview of the two TREC test collections.

• Evaluation metrics: Precision, Mean Average Precision (MAP), Mean Reciprocal Rank (MRR), and Normalized Discounted Cumulative Gain (NDCG). Experiments

Results


Figure : Comparison of our approach (PMPT) against the MPT and the PRP on TREC2008 ad hoc task.

Post-Modern Portfolio Theory for Information Retrieval

Experiments

Results

Figure : Comparison of our approach (PMPT) against the MPT and the PRP on Robust2004 hard topics.

Post-Modern Portfolio Theory for Information Retrieval

14 / 15

Conclusions and Future Work

Conclusions and Future Work

- This paper proposes a mean-semivariance framework to study document ranking under uncertainty.
- The downside uncertainty can be distinguished with the upside uncertainty when optimizing a ranking list.
- The experimental results validate that the proposed framework improves the ranking quality over the PRP baseline and the MPT approach.
 - The proposed framework obtains about 1%-7% improvements over the PRP baseline in terms of MAP5, P@5, and NDCG@5.
- Future directions:
 - How to use learning techniques to find out the optimal parameters of the proposed framework.
 - **2** How to adapt the framework to diversified information retrieval.