Financial Sentiment Analysis for Risk Prediction

Tse Liu Department of Computer Science National Chengchi University

Joint work with Prof. Chuan-Ju Wang, Prof. Ming-Feng Tsai and Chin-Ting Chang

IJCNLP 2013, October 16, 2013

Outline

2 Methodology

Introduction

Introduction

- Financial field: Predict risk by GARCH model.¹
- $\bullet\,$ Kogan used the bag-of-words model to bring the text information into prediction.^2
- Sentiment analysis is the task of finding the attitudes of authors about specific objects.
- In finance, the sentiments can be used to reflect the correlations with other financial measures, such as stock returns and volatilities.

¹Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. *Journal of econometrics.*

 $^{^2 {\}rm Kogan}$ et al. (2009). Predicting risk from financial reports with regression. In NAACL '09.

Introduction

Introduction

- This paper attempts to use the finance-specific sentiment lexicon to model the relations between sentiment information and financial risk.
 - Predict target: Financial risk (stock return volatility).
 - Features: Text information, financial information (stock return volatility).
- We formulate the problem as Regression and Ranking prediction tasks:
 - Regression predict target: Volatility of companies.
 - Ranking predict target : Relative risk level of companies.

Risk Proxy: Stock Return Volatility

Stock Return

Total Stock Return
$$=rac{(S_1-S_0)}{S_0}$$

- Volatility
 - In finance, volatility is a common risk metric measured by the standard deviation of a s returns over a period of time.
- Stock Return Volatility
 - Let S_t be the price of a stock at time t.

$$V_{[t-n,t]} = \sqrt{rac{\sum_{i=t-n}^t (R_i - \overline{R})^2}{n}},$$
 where $\overline{R} = \sum_{i=t-n}^t rac{R_i}{(n+1)}.$

Finance-specified Sentiment Lexicon

- For most sentiment analysis algorithms, the sentiment lexicon is the most important resource.³
- The words have different meaning between finance lexicon and general-purpose lexicon.

³Feldman. (2013), Techniques and applications for sentiment analysis. *Communications of the ACM*

Six Finance-Specific Lexicons⁴

Class	Meaning	Examples		
Fin-Neg	Negative business terminologies	deficit, delist		
Fin-Pos	Positive business terminologies	profit, integr		
Fin-Unc	Fin-Unc Words denoting uncertainty			
Fin-Lit	Fin-Lit Propensity for legal contest			
MW-Strong	MW-Strong Strong levels of confidence			
MW-Weak	MW-Weak Weak levels of confidence			

⁴Loughran and McDonald. (2011), When is a liability not a liability? *The Journal of Finance.*

Problem Formulation

- Predict target: Stock return volatility.
- Features
 - Text information: Financial sentiment words (finance-specific lexicons).
 - Financial information: The twelve months before the report volatility for each company.
- Predict target: Financial risk (stock return volatility).

Regression and Ranking

Regression:

$$\min_{w} V(w) = \frac{1}{2} < w, w > + \frac{C}{n} \sum_{i=1}^{n} \max(|v_i - f(d_i; w)| - \epsilon, 0)$$

- Ranking:
 - Ranking solves the same optimization problem as regression, but the difference is that ranking focuses on the pair-wised ranking orders.

Corpora and Dictionary

- The 10-K Corpus
 - An annual report required by the Securities and Exchange Commission (SEC) since 1996 to 2006.
- Six Finance-Specific Lexicons
 - Fin-Neg
 - Fin-Pos
 - Fin-Unc
 - Fin-Lit
 - MW-Strong
 - MW-Weak

Statistics of the Financial Lexicon

Dictionary	# of Words	# of Stemmed Words		
Fin-Neg	2,349	918		
Fin-Pos	354	151		
Fin-Unc	291	127		
Fin-Lit	871	443		
MW-Strong	19	10		
MW-Weak	27	15		
Total	3,911	1,664		

Feature Representation

• We use the *TFIDF*, *LOG1P*⁵ to represent the text information of documents.

$$\mathit{TFIDF}(t, \mathbf{d}) = \mathit{TF}(t, \mathbf{d}) imes \mathit{IDF}(t, \mathbf{d}) = rac{\mathit{TC}(t, \mathbf{d})}{|\mathbf{d}| imes \log(|D|/|\mathbf{d} \in D: t \in \mathbf{d}|)}$$

 $LOG1P = \log(1 + TC(t, \mathbf{d}))$

• In addition to the finance-specific lexicon, we add the twelve months before the report volatility for each company.

 $^{^5 {\}rm Kogan}$ et al. (2009), Predicting risk from financial reports with regression. In NAACL '09.

Experimental Setting

- We use every 5 years historical financial reports to train the models
 - The trained models are tested by the following year.
- Example:
 - Training set: The 1996-2000 year financial reports.
 - Test set: The 2001 financial reports.

Corpora statistic

Year	Words	Documents	Words/Doc.
1996	5.58M	1,406	3,969
1997	9.52M	2,260	4,213
1998	12.06M	2,461	4,902
1999	14.77M	2,524	5,852
2000	13.67M	2,424	5,639
2001	15.64M	2,596	6,025
2002 ⁶	23.04M	2,845	8,100
2003	35.78M	3,611	9,910
2004	39.38M	3,558	11,069
2005	42.39M	3,474	12,204
2006	39.23M	3,306	11,867

⁶The Sarbanes-Oxley Act of 2002.

Experimental Results

Task (Features)		2001	2002	2003	2004	2005	2006	Mirco-avg
Regression (LOG1P+)		Mean Squared Error						
	ORG	0.18082	0.17175	0.17157	0.12879	0.13038	0.14287	0.15271
	SEN	0.18506	0.16367	0.15795	0.12822	0.13029	0.13998	0.14894
Ranking (TFIDF+)		Kendall's Tau						
	ORG	0.62173	0.63626	0.58528	0.59350	0.59651	0.57641	0.59965
	SEN	0.63349	0.62280	0.60527	0.59017	0.60273	0.58287	0.60458
		Spearman's Rho						
	ORG	0.65271	0.66692	0.61662	0.62317	0.62531	0.60371	0.62939
	SEN	0.66397	0.65303	0.63646	0.61953	0.63133	0.60999	0.63403

Figure : Experimental Results of Using Original Texts and Only Sentiment Words.

Financial Sentiment Analysis for Risk Prediction

Analysis: Regression and Ranking

Figure : Number of Occurrences of the Top 10 Weighted Terms Learned.

Financial Sentiment Analysis for Risk Prediction

Financial Sentiment Terms Analysis

Figure : Highly-Weighted Terms Learned from the 6 Ranking Models of Using Original Texts (ORG) and Only Sentiment Words (SEN).

Financial Sentiment Analysis for Risk Prediction

Conclusion

Conclusion

- This paper identifies the importance of sentiment words in financial reports associated with financial risk.
- The experimental results show that the models trained on sentiment words can result in comparable performance to those on origin texts.
- The learned models also suggest strong correlations between financial sentiment words and the risk of companies.
- As a result, these findings provide us more insight into the impact of financial sentiment words on companies' future risk.