#### A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables

#### Prof. Chuan-Ju Wang

Department of Computer Science Taipei Municipal University of Education Joint work with Prof. Yuh-Dauh Lyuu and Prof. Tian-Shyr Dai

> March 29, 2012 IEEE CIFEr

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables

Lattice Construction

Conclusions





- **2** Modeling and Preliminaries
- **3** Lattice Construction
- **4** Numerical Evaluation



### Introduction

- Sophisticated derivatives are constantly being structured to fit the needs of markets.
  - Addressing their sophisticated features significantly increases the difficulty of pricing them.
- Besides, the importance of some factors, like sovereign risk or credit risk, which are overlooked in primitive derivatives pricing models, is being recognized as key due to recent financial crises.
  - E.g., Vulnerable options.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Klein (1996); Klein and Inglis (2001).

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables

(Introduction)

#### **Need for Numerical Methods**

- Most complex derivatives have no analytical formulas for their prices, particularly when there is more than one market variable.
- As a result, these derivatives must be priced by numerical methods such as lattice.
- However, the nonlinearity error of lattices due to the nonlinearity of the derivative's value function could lead to oscillating prices.<sup>2</sup>

<sup>2</sup>Figlewski and Gao (1999).

#### **Oscillation Problem**



A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables

(Introduction)

# **Multivariate Derivatives**

- Multivariate derivatives elevate the pricing difficulty to a new level compared with that of univariate derivatives.
- The correlations between the market variables must be carefully handled.
- Otherwise, invalid branching probabilities may result.<sup>3</sup>

<sup>3</sup>Zvan et al. (2003).

Introduction)

## **Related Works**

- Rubinstein (1994) builds a three-dimensional lattice called pyramid for two correlated assets.
  - But his lattice is not flexible enough to suppress the nonlinearity error.
- Hull and White (1994) build a lattice by assuming that the processes of market variables are independent first, and then adjusting the branching probabilities to reflect the correlations.
  - But the branching probabilities can be negative.
- Andricopoulos et al. (2007) propose a quadrature method to handle multiple assets.
  - This method can suppress the nonlinearity error.
  - But it is not as efficient as the lattice in handling continuous sampling features, like the American exercise feature and the continuous barrier options.<sup>4</sup>

<sup>4</sup>Dai and Lyuu (2010).

# **Main Results**

- This paper proposes a multi-phase methodology to build multivariate lattices for pricing complex derivatives with small nonlinearity errors.
- We adopt Hull and White (1990b)'s orthogonalization method to handle the correlations between market variables.
  - The orthogonalization transforms the original, correlated processes into uncorrelated ones.
- The multi-phase method builds the lattice for the transformed, uncorrelated processes.

# **The Lognormal Diffusion Process**

• The market variable follows a lognormal diffusion process with a constant volatility *σ* and a constant riskless rate *r*:

$$\frac{dS(t)}{S(t)} = rdt + \sigma dz(t),$$

where dz(t) denotes a standard Brownian motion.

Lattice Construction

# The CRR Lattice

- The size of one time step is  $\Delta t = T/n$ .
- $u, d, P_u, P_d$ :
  - Match the mean and variance of the stock return asymptotically.
  - *ud* = 1.
  - $P_u + P_d = 1$ .



#### **Trinomial Structure**



The branching probabilities for the node X

$$\begin{split} \beta &\equiv \hat{\mu} - \mu, \\ \alpha &\equiv \hat{\mu} + 2\sigma\sqrt{\Delta t} - \mu = \beta + 2\sigma\sqrt{\Delta t}, \\ \gamma &\equiv \hat{\mu} - 2\sigma\sqrt{\Delta t} - \mu = \beta - 2\sigma\sqrt{\Delta t}, \\ \hat{\mu} &\equiv \ln\left(s(B)/s(X)\right). \end{split}$$

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables

Introduction

Conclusions

## **Trinomial Structure (concluded)**



The branching probabilities for the node X

$$\begin{split} P_u \alpha + P_m \beta + P_d \gamma &= 0, \\ P_u (\alpha)^2 + P_m (\beta)^2 + P_d (\gamma)^2 &= \mathsf{Var}, \\ P_u + P_m + P_d &= 1. \end{split}$$

13

# **Price Oscillation Problem**

- Price oscillation problem is mainly due to the nonlinearity error.
  - Introduced by the nonlinearity of the option value function.
- The solution to the nonlinearity error:
  - Make a price level of the lattice coincide with the location where the option value function is highly nonlinear.

14

# Lattice Construction

- We demonstrate our multi-phase method for two correlated market variables.
  - For more than two market variables, follow the same procedure.
- To simultaneously handle the correlations and make our lattice match the critical locations, Hull and White (1990b)'s orthogonalization method is revised as follows:
  - Order the market variables first.
  - Then orthogonalize the original, correlated processes into uncorrelated ones.
- Then build the multivariate lattice for the uncorrelated processes and make this lattice match the critical locations.

## Orthogonalization

- Before the transformation, the market variables are so ordered that the *i*-th coordinates of the critical locations depend only on the first *i* of the market variables.
- E.g., The two correlated market variables are ordered so that  $S_1$  is followed by  $S_2$  when
  - The first coordinates of the critical locations are functions of  $S_1$ .
  - The second coordinates are functions of  $S_1$  and  $S_2$ .

16

# **Orthogonalization (cont.)**

• Let  $S_1$  and  $S_2$  be represented as follows:

$$\begin{aligned} dS_1 &= \mu_1 dt + \sigma_1 dz_1, \\ dS_2 &= \mu_2 dt + \sigma_2 dz_2. \end{aligned}$$

• The correlation between  $dz_1$  and  $dz_2$  is  $\rho$ .

Introduction

# **Orthogonalization (cont.)**

 It is a standard fact that dz<sub>2</sub> can be decomposed into a linear combination of dz<sub>1</sub> and another independent Brownian motion dz:

$$dz_2 = \rho \, dz_1 + \sqrt{1-\rho^2} \, dz.$$

• The differential forms of  $S_1$  and  $S_2$  can be written as

$$\left[\begin{array}{c} dS_1\\ dS_2\end{array}\right] = \left[\begin{array}{c} \mu_1\\ \mu_2\end{array}\right] dt + \left[\begin{array}{c} \sigma_1 & 0\\ \sigma_2\rho & \sigma_2\sqrt{1-\rho^2}\end{array}\right] \left[\begin{array}{c} dz_1\\ dz\end{array}\right].$$

• Now, transform  $S_1$  and  $S_2$  into two uncorrelated processes  $X_1$  and  $X_2$ :

$$\begin{bmatrix} dX_1 \\ dX_2 \end{bmatrix} = \begin{bmatrix} \frac{\mu_1/\sigma_1}{\frac{-\rho\mu_1}{\sigma_1\sqrt{1-\rho^2}} + \frac{\mu_2}{\sigma_2\sqrt{1-\rho^2}}} \end{bmatrix} dt + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} dz_1 \\ dz \end{bmatrix}.$$
 (1)

18 /

## **Orthogonalization (concluded)**

• Integrate both sides of Eq. (1) to yield

$$\begin{array}{lll} X_1(t) & = & \displaystyle \frac{S_1(t) - S_1(0)}{\sigma_1}, \\ X_2(t) & = & \displaystyle \frac{1}{\sqrt{1 - \rho^2}} \left( \frac{S_2(t) - S_2(0)}{\sigma_2} - \rho X_1(t) \right), \end{array}$$

where  $X_1(0) = X_2(0) = 0$  for convenience.

•  $S_1(t)$  and  $S_2(t)$  can be backed out of  $X_1(t)$  and  $X_2(t)$  thus:

$$\begin{array}{lll} S_1(t) &=& S_1(0) + \sigma_1 X_1(t), \\ S_2(t) &=& S_2(0) + \sigma_2 \left( \sqrt{1 - \rho^2} X_2(t) + \rho X_1(t) \right). \end{array}$$

(Lattice Construction)

Conclusions

19

# Core Ideas of Our Multi-Phase Branch Construction

- Consider a bivariate lattice that approximates the evolution of two uncorrelated processes X<sub>1</sub>(t) and X<sub>2</sub>(t).
- The construction contains two phases.
  - Lattice for X<sub>1</sub>(t).
  - 2 Lattice for X<sub>2</sub>(t).



# A Bivariate Lattice: Two Correlated Market Variables

- We now built a bivariate lattice to price vulnerable barrier options with the strike price K and the barrier  $B(t) = Be^{-\gamma(T-t)}$ .
  - The two market variables: the stock price, S(t), and the firm's asset value, V(t).
- The default boundary for the firm's asset value at time t,  $D^*(S(t), t) = De^{-r(T-t)} + c(S(t), t).^5$
- In this setup, the option holder receives

 $c(S(t),t)/D^*(S(t),t)$ 

of the firm's asset value when the firm defaults.

<sup>&</sup>lt;sup>5</sup>Klein and Inglis (2001).

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables

# A Bivariate Lattice: Two Correlated Market Variables (cont.)

- *S*(*t*) and *V*(*t*) are both assumed to follow the lognormal diffusion processes.
- We first order the two processes:  $\ln S(t)$  is the first process and  $\ln V(t)$  the second.
- We then apply the orthogonalization process to obtain two uncorrelated processes.

$$dX(t) = \frac{1}{\sigma_S} \left( r - \frac{\sigma_S^2}{2} \right) dt + dz_S,$$
  

$$dY(t) = \frac{1}{\sqrt{1 - \rho^2}} \left( -\frac{\rho}{\sigma_S} \left( r - \frac{\sigma_S^2}{2} \right) + \frac{1}{\sigma_V} \left( r - \frac{\sigma_V^2}{2} \right) \right) dt + dz.$$

22

# A Bivariate Lattice: Two Correlated Market Variables (cont.)

- The X(t)-lattice is first built.
- *B*(*t*) will be transformed to *B*<sub>X</sub>(*t*) on the *X*(*t*)-lattice via:

$$B_X(t) = \frac{1}{\sigma_S} \left( \ln B(t) - \ln S(0) \right).$$

- The lattice starts by placing gray nodes on the barrier to reduce the nonlinearity error.
- All the other nodes are then laid from the gray nodes upward and downward.



(Lattice Construction)

# A Bivariate Lattice: Two Correlated Market Variables (cont.)

- The second phase builds the Y(t)-lattice first.
- D\*(t) will be transformed to D<sub>Y</sub><sup>\*</sup>(t) on the Y(t)-lattice via:

$$D_Y^*(t) = \left( rac{\ln D^*(t) - \ln V(0) - 
ho X(t)}{\sigma_V \sqrt{1 - 
ho^2}} 
ight)$$

 $2\sqrt{\Delta t}$  $B_X(t)$ 

# A Bivariate Lattice: Two Correlated Market Variables (concluded)

- Once we have D<sup>\*</sup><sub>Y</sub>(t), the lattice starts by placing nodes on this default boundary (the black nodes).
- In the end of the second phase, the Y(t)-lattice is added "on top of" the X(t)-lattice to form the bivariate lattice.



Conclusions

# Convergence of the Vulnerable Barrier Call Option



A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables

Conclusions

# Evaluating Defaultable Bonds under Short Rate Models

| Defaultable Zero Bonds             |         |                      |                 |                    |  |  |  |  |  |
|------------------------------------|---------|----------------------|-----------------|--------------------|--|--|--|--|--|
| with an Exogenous Default Boundary |         |                      |                 |                    |  |  |  |  |  |
| Face value (F)                     | Lattice | Formula <sup>6</sup> | Relative errors | Default-free bonds |  |  |  |  |  |
| 2000                               | 1924.8  | 1924.8               | -0.002%         | 1925.0             |  |  |  |  |  |
| 2500                               | 2404.0  | 2404.4               | -0.015%         | 2406.2             |  |  |  |  |  |
| 3000                               | 2874.9  | 2876.2               | -0.045%         | 2887.4             |  |  |  |  |  |

| Call/  |                |              |             |               |             |                |  |
|--------|----------------|--------------|-------------|---------------|-------------|----------------|--|
| Put    | Callable bonds |              | Putabl      | Putable bonds |             | Straight bonds |  |
| prices | Defaultable    | Default-free | Defaultable | Default-free  | Defaultable | Default-free   |  |
| 3030   | 3016.6         | 3029.4       | 3063.6      | 3063.8        | 3017.6      | 3034.8         |  |
| 3035   | 3017.2         | 3033.0       | 3068.4      | 3068.7        | 3017.6      | 3034.8         |  |
| 3040   | 3017.5         | 3034.4       | 3073.2      | 3073.5        | 3017.6      | 3034.8         |  |
| 3050   | 3017.6         | 3034.8       | 3082.9      | 3083.2        | 3017.6      | 3034.8         |  |

#### <sup>6</sup>Briys and De Varenne (1997).

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables



# Conclusions

- This paper proposes a flexible multi-phase method to build a multivariate lattice for pricing derivatives accurately.
- To simultaneously handle the correlations and make the lattice match the critical locations:
  - **1** The market variables are first properly ordered.
  - Provide the original, correlated market variables are transformed into uncorrelated ones by orthogonalization.
- A multivariate lattice is then built for the transformed, uncorrelated processes.
- Numerical results show that our methodology can be applied to price a wide range of complex financial contracts efficiently and accurately.

A Multi-Phase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables