A Multi-step-ahead Markov Conditional **Forward Model with Cube Perturbations For Extreme Weather Forecasting**

Presenter : Chia-Yuang Chang

Chia-Yuang Chang, Cheng-Wei Lu, Chuan-Ju Wang

February, 2021 AAAI 2021, Virtual

- Introduction
- MSA Prediction Model
- Cube Perturbation
- Experiment Results
- Conclusion

Agenda

Introduction

- Goal : Predict extreme weather at future horizons (time stamps).
- Multi-step-ahead (MSA) Prediction.

Will Extreme Weather Happens Here 1 day later?

J

Introduction

MSA Prediction Model

MSA Prediction Model

• Direct Model : it treats each future prediction time point independently and build a model for each of them

MSA Prediction Model

MSA Prediction Model

• Direct Model : if we want to predict the probability of extreme weather for T+h (the current time is T), we just need to do the following :

At Current time T

MSA Prediction Model

MSA Prediction Model

Markov Conditional Forward Model (MCF): We build two models to calculate Probability to do probability inference.

Conditional forward model

conditional probability between two consecutive prediction time and adopt Markov

Introduction

MSA Prediction Model

MSA Prediction Model

following inference:

 Markov Conditional Forward Model (MCF) : if we want to predict the probability of extreme weather for T+h by inferencing using the probability at T+h-1, we need to do the

> Probability of an event not to happen

Probability of an event to happen

$$\hat{Y}_{t+h-1}^{(i,j)} \times p_{t+h-1,t+h}^{T}$$

$$\hat{Y}_{t+h}^{(i,j)}$$

Probability of an event to happen

 $(1 - \hat{Y}_{t+h-1}^{(i,j)}) \times p_{t+h-1,t+h}^{F}$

Probability of an event not to happen

Cube Perturbation

- To address error accumulation
 - MCF model accumulates error because of using predicted values \bigcirc to compute the next prediction.

- Naïve Perturbation
 - Randomly switch the label from 0 to 1 (or from 1 to 0) based \bigcirc on a predefined probability.

- Two assumptions of cube perturbations
 - Positive data are more critical for model training than negative data because of their sparsity.
 - Spatial and temporal correlations among labels in the obtained data exist.
- The definition of "Cube" (or "Neighbor")

 $\mathcal{N}_{t_0}^{(i_0,j_0)} = \{(i,j,t) \mid i \in \mathcal{I} \land j \in \mathcal{J} \land t \in \mathcal{T} \land j \in \mathcal{J} \land t \in \mathcal{T} \land t \in \mathcal{$ $|i - i_0| \le \kappa \land |j - j_0| \le \kappa \land |t - t_0| \le \kappa \} \setminus \{(i_0, j_0, t_0)\}$

 \odot E.g., $\kappa = 1$ results in a 3 \times 3 \times 3 cube perturbation.

Experiment Results

Cube Perturbation

Introduction

MSA Prediction Model

Cube Perturbation

- Simple Cube Perturbation (SCP)
 - Based on the aforementioned two assumptions: \bigcirc

$$y_{t_0}^{(i_0,j_0)} \neq 1 \land \exists (i,j,t) \in \mathcal{N}_{t_0}^{(i_0,j_0)} \left(y_t^{(i,j)} = 1 \right)$$

Cube Perturbation

Experiment Results

	$i_0 - 1$	i_0	$i_0 + 1$		$i_0 - 1$	i_0	$i_0 + 1$		$i_0 - 1$	i_0
$j_0 + 1$	0	0	0	$j_0 + 1$	1	0	0	$j_0 + 1$	0	1
j_0	0	0	0	j_0	0	$y_{t_0}^{(i_0,j_0)}$	0	j_0	0	0
$j_0 - 1$	1	0	0	$j_0 - 1$	0	0	1	$j_0 - 1$	0	0
		$t_0 - 1$				t_0				$t_0 + 1$

Cube Perturbation

- Neighborhood Probability Cube Perturbation (NPCP)
 - The perturbation probability is proportional to how many of its neighbors have positive labels

$$\xi_{(i_0,j_0,t_0)}^{\text{NPCP}} = \frac{\left| \left\{ (i,j,t) \ \middle| \ (i,j,t) \in \mathcal{N}_{t_0}^{(i_0,j_0)} \land y_t^{(i,j)} = 1 \right\} \right|}{\left| N_{t_0}^{(i_0,j_0)} \right|}$$

MSA Prediction Model

Cube Perturbation

Multinomial Cube Perturbation (MCP)

Models the probability of counts for each side of a k-sided die rolled n times. \bigcirc

$$\xi_{(i_0,j_0,t_0)}^{\text{MCP}} = \frac{\left| \left\{ (i,j,t) \ \Big| \ (i,j,t) \in \mathcal{N}_{t_0}^{(i_0,j_0)} \wedge y_t^{(i,j)} = 1 \right\} \right|}{\sum\limits_{\forall \hat{i},\hat{j},\hat{t}} \left| \left\{ (i,j,t) \ \Big| \ (i,j,t) \in \mathcal{N}_{\hat{t}}^{(\hat{i},\hat{j})} \wedge y_t^{(i,j)} = 1 \right\} \right|}$$

We then roll the k-sided die n times to obtain n data points for perturbation, where n is associated with:

 r^{MO}

$$^{\mathrm{CP}} = n/k$$
 with $k = I \times J \times T$

- Datasets: ExtremeWeather
 - A physical variables image dataset containing extreme \bigcirc weather labels in each temporal resolution
 - 16 channels (e.g. pressure, temperature, humidity...) \bigcirc
 - Each horizon is equal to 6 hours \bigcirc
 - 4 labels of extreme weather

Experiment Results

9. Surface temperature (radiative)

- Experiment Setting
 - Two extreme weather phenomena
 - Tropical cyclone \bigcirc
 - Extratropical cyclone 0
 - Conducted experiments in a certain area
 - 150 x 150 most active area \bigcirc
 - 50 km resolution

Cube Perturbation

Experiment Results

of extreme weather events

• Direct and MCF model performance (AUC)

			Tropio	cal cyclone	S				
Horizons (hours)	6	12	18	24	30	36	42	48	Average
LR (direct)	0.6682	0.6664	0.6641	0.6490	0.6472	0.6502	0.6576	0.6428	0.6557
LR (MCF)	0.7376	0.7213	0.7081	0.6747	0.6598	0.6634	0.6567	0.6428	0.6830
LR improvement (%)	10.39**	8.25 **	6.63**	3.96**	1.93**	2.04^{**}	-0.14^*	0.00	4.16
CNN (direct)	0.6760	0.6760	0.6773	0.6629	0.6577	0.6601	0.6674	0.6518	0.6662
CNN (MCF)	0.7441	0.7309	0.7188	0.6864	0.6739	0.6756	0.6689	0.6506	0.6937
CNN improvement (%)	10.07^{**}	8.12**	6.13 **	3.55^{**}	2.46^{**}	2.35^{**}	0.22	-0.18	4.13
			Extratro	pical cyclo	nes				
Horizons (hours)	6	12	18	24	30	36	42	48	Average
								-0	Average
LR (direct)	0.8243	0.8113	0.7976	0.7831	0.7628	0.7429	0.7303	0.7242	0.7721
LR (direct) LR (MCF)	$\begin{array}{c} 0.8243 \\ 0.9361 \end{array}$	$\begin{array}{c} 0.8113 \\ 0.8858 \end{array}$	$\begin{array}{c} 0.7976 \\ 0.8426 \end{array}$	$\begin{array}{c} 0.7831 \\ 0.8104 \end{array}$	$\begin{array}{c} 0.7628 \\ 0.7821 \end{array}$	$0.7429 \\ 0.7564$	$0.7303 \\ 0.7376$	0.7242 0.7275	0.7721 0.8098
LR (direct) LR (MCF) LR improvement (%)	0.8243 0.9361 13.56 **	0.8113 0.8858 9.19 **	0.7976 0.8426 5.64 **	0.7831 0.8104 3.48 **	0.7628 0.7821 2.53 **	0.7429 0.7564 1.81^{**}	0.7303 0.7376 1.00 **	0.7242 0.7275 0.46 **	Average 0.7721 0.8098 4.88
LR (direct) LR (MCF) LR improvement (%) CNN (direct)	0.8243 0.9361 13.56** 0.8244	0.8113 0.8858 9.19** 0.8119	0.7976 0.8426 5.64 ** 0.7979	0.7831 0.8104 3.48 ** 0.7843	0.7628 0.7821 2.53** 0.7734	0.7429 0.7564 1.81 ** 0.7614	0.7303 0.7376 1.00** 0.7489	0.7242 0.7275 0.46** 0.7396	Average 0.7721 0.8098 4.88 0.7802
LR (direct) LR (MCF) LR improvement (%) CNN (direct) CNN (MCF)	0.8243 0.9361 13.56** 0.8244 0.9360	0.8113 0.8858 9.19** 0.8119 0.8851	0.7976 0.8426 5.64 ** 0.7979 0.8421	0.7831 0.8104 3.48** 0.7843 0.8103	0.7628 0.7821 2.53** 0.7734 0.7852	0.7429 0.7564 1.81** 0.7614 0.7651	0.7303 0.7376 1.00** 0.7489 0.7532	0.7242 0.7275 0.46** 0.7396 0.7413	Average 0.7721 0.8098 4.88 0.7802 0.8148

Experiment Results

• Direct and MCF model performance (AUC)

			Tropio	cal cyclone	S				
Horizons (hours)	6	12	18	24	30	36	42	48	Average
LR (direct) LR (MCF) LR improvement (%)	0.6682 0.7376 10.39 **	0.6664 0.7213 8.25 **	0.6641 0.7081 6.63 **	0.6490 0.6747 3.96 **	$0.6472 \\ 0.6598 \\ 1.93^{**}$	$0.6502 \\ 0.6634 \\ 2.04^{**}$	$0.6576 \\ 0.6567 \\ - 0.14^*$	$\begin{array}{c} 0.6428 \\ 0.6428 \\ 0.00 \end{array}$	$0.6557 \\ 0.6830 \\ 4.16$
CNN (direct) CNN (MCF) CNN improvement (%)	0.6760 0.7441 10.07**	0.6760 0.7309 8 .12**	0.6773 0.7188 6.13 **	$0.6629 \\ 0.6864 \\ 3.55^{**}$	$0.6577 \\ 0.6739 \\ 2.46^{**}$	$0.6601 \\ 0.6756 \\ 2.35^{**}$	$\begin{array}{c} 0.6674 \\ 0.6689 \\ 0.22 \end{array}$	$\begin{array}{c} 0.6518 \\ 0.6506 \\ -0.18 \end{array}$	$0.6662 \\ 0.6937 \\ 4.13$
			Extratro	pical cyclo	nes				
Horizons (hours)	6	12	18	24	30	36	42	48	Average
LR (direct) LR (MCF) LR improvement (%)	0.8243 0.9361 13.56 **	0.8113 0.8858 9 . 19 **	$0.7976 \\ 0.8426 \\ {f 5.64}^{**}$	$0.7831 \\ 0.8104 \\ 3.48^{**}$	$0.7628 \\ 0.7821 \\ 2.53^{**}$	$0.7429 \\ 0.7564 \\ 1.81^{**}$	0.7303 0.7376 1.00 **	0.7242 0.7275 0.46 **	$\begin{array}{c} 0.7721 \\ 0.8098 \\ 4.88 \end{array}$
CNN (direct) CNN (MCF) CNN improvement (%)	0.8244 0.9360 13.54 **	0.8119 0.8851 9.02 **	$0.7979 \\ 0.8421 \\ 5.54^{**}$	0.7843 0.8103 3.32 **	$0.7734 \\ 0.7852 \\ 1.53^{**}$	0.7614 0.7651 0.49 **	0.7489 0.7532 0.57 **	0.7396 0.7413 0.23 **	$\begin{array}{c} 0.7802 \\ 0.8148 \\ 4.43 \end{array}$

Experiment Results

Performance of various perturbation methods (AUC)

		Т	ropical cyc	clones					
Horizons (hours)	6	12	18	24	30	36	42	48	Average
CNN (MCF)	0.7441	0.7309	0.7188	0.6864	0.6739	0.6756	0.6689	0.6506	0.6937
+Naive ($\xi^{\text{Naive}} = 5\%$)	0.7405	0.7144	0.6898	0.6614	0.6551	0.6555	0.6602	0.6438	0.6776
+Multinomial cube ($r^{MCP} = 10\%$)	0.7395	0.7266	0.7182	0.6863	0.6749	0.6791	0.6678	0.6481	0.6926
+Simple Cube ($\xi^{SCP} = 47.5\%$)	0.7458	0.7317	0.7266	0.6999	0.6908	0.7045	0.6820	0.6633	0.7056
+Neighborhood prob cube	0.7445	0.7308	0.7272	0.7002	0.6922	0.7077	0.6846	0.6668	0.7068
Improvement (%)	0.23	0.11	1.16^{*}	2.01^{*}	2.71^{**}	4.76^{**}	2.35^{*}	${\bf 2.48}^{*}$	1.89
		Ext	ratropical o	cyclones					
Horizons (hours)	6	12	18	24	30	36	42	48	Average
CNN (MCF)	0.9360	0.8851	0.8421	0.8103	0.7852	0.7651	0.7532	0.7413	0.8148
+Naive ($\xi^{\text{Naive}} = 2.5\%$)	0.9371	0.8808	0.8288	0.7957	0.7716	0.7566	0.7470	0.7385	0.8070
+Multinomial cube ($r^{MCP} = 5\%$)	0.9365	0.8861	0.8425	0.8105	0.7857	0.7661	0.7545	0.7435	0.8157
+Simple Cube ($\xi^{SCP} = 47.5\%$)	0.9356	0.8855	0.8428	0.8101	0.7845	0.7663	0.7558	0.7442	0.8156
+Neighborhood prob cube	0.9368	0.8873	0.8444	0.8112	0.7849	0.7650	0.7538	0.7428	0.8158
Improvement (%)	0.12	0.24	0.27	0.12	0.06	0.16	0.35	0.39	0.12

Performance of various perturbation methods (AUC)

		Т	ropical cyc	clones					
Horizons (hours)	6	12	18	24	30	36	42	48	Average
CNN (MCF)	0.7441	0.7309	0.7188	0.6864	0.6739	0.6756	0.6689	0.6506	0.6937
+Naive ($\xi^{\text{Naive}} = 5\%$)	0.7405	0.7144	0.6898	0.6614	0.6551	0.6555	0.6602	0.6438	0.6776
+Multinomial cube ($r^{MCP} = 10\%$)	0.7395	0.7266	0.7182	0.6863	0.6749	0.6791	0.6678	0.6481	0.6926
+Simple Cube ($\xi^{\text{SCP}} = 47.5\%$)	0.7458	0.7317	0.7266	0.6999	0.6908	0.7045	0.6820	0.6633	0.7056
+Neighborhood prob cube	0.7445	0.7308	0.7272	0.7002	0.6922	0.7077	0.6846	0.6668	0.7068
Improvement (%)	0.23	0.11	1.16^*	2.01^{*}	2.71**	4.76**	2.35^{*}	2.48^{*}	1.89
Extratropical cyclones									
		Ext	ratropical c	cyclones					
Horizons (hours)	6	Ext 12	ratropical o 18	eyclones 24	30	36	42	48	Average
Horizons (hours) CNN (MCF)	6 0.9360	Ext 12 0.8851	ratropical c 18 0.8421	eyclones 24 0.8103	30 0.7852	36 0.7651	42 0.7532	48 0.7413	Average 0.8148
Horizons (hours) CNN (MCF) +Naive ($\xi^{\text{Naive}} = 2.5\%$)	6 0.9360 0.9371	Ext 12 0.8851 0.8808	ratropical o 18 0.8421 0.8288	eyclones 24 0.8103 0.7957	30 0.7852 0.7716	36 0.7651 0.7566	42 0.7532 0.7470	48 0.7413 0.7385	Average 0.8148 0.8070
Horizons (hours) CNN (MCF) +Naive $(\xi^{\text{Naive}} = 2.5\%)$ +Multinomial cube $(r^{\text{MCP}} = 5\%)$	6 0.9360 0.9371 0.9365	Ext 12 0.8851 0.8808 0.8861	ratropical o 18 0.8421 0.8288 0.8425	24 0.8103 0.7957 0.8105	30 0.7852 0.7716 0.7857	36 0.7651 0.7566 0.7661	$\begin{array}{r} 42 \\ 0.7532 \\ 0.7470 \\ 0.7545 \end{array}$	48 0.7413 0.7385 0.7435	Average 0.8148 0.8070 0.8157
Horizons (hours) CNN (MCF) +Naive ($\xi^{\text{Naive}} = 2.5\%$) +Multinomial cube ($r^{\text{MCP}} = 5\%$) +Simple Cube ($\xi^{\text{SCP}} = 47.5\%$)	6 0.9360 0.9371 0.9365 0.9356	Ext 12 0.8851 0.8808 0.8861 0.8855	ratropical o 18 0.8421 0.8288 0.8425 0.8428	eyclones 24 0.8103 0.7957 0.8105 0.8101	30 0.7852 0.7716 0.7857 0.7845	36 0.7651 0.7566 0.7661 0.7663	42 0.7532 0.7470 0.7545 0.7558	48 0.7413 0.7385 0.7435 0.7442	Average 0.8148 0.8070 0.8157 0.8156
Horizons (hours) CNN (MCF) +Naive $(\xi^{\text{Naive}} = 2.5\%)$ +Multinomial cube $(r^{\text{MCP}} = 5\%)$ +Simple Cube $(\xi^{\text{SCP}} = 47.5\%)$ +Neighborhood prob cube	6 0.9360 0.9371 0.9365 0.9356 0.9368	Ext 12 0.8851 0.8808 0.8861 0.8855 0.8873	ratropical o 18 0.8421 0.8288 0.8425 0.8428 0.8428 0.8444	cyclones 24 0.8103 0.7957 0.8105 0.8101 0.8112	30 0.7852 0.7716 0.7857 0.7845 0.7849	36 0.7651 0.7566 0.7661 0.7663 0.7650	42 0.7532 0.7470 0.7545 0.7558 0.7538	48 0.7413 0.7385 0.7435 0.7428	Average 0.8148 0.8070 0.8157 0.8156 0.8158

- MCF model provides better performance than traditional direct model on MSA extreme weather prediction.
- MCF model learned with the use of CNN yields prominent results for both short-term and long-term predictions.
- Cube perturbation methods successfully enhance the fault tolerance of the MCF model by addressing error accumulation.

Conclusion

Thanks For Your Listening! Any Question?