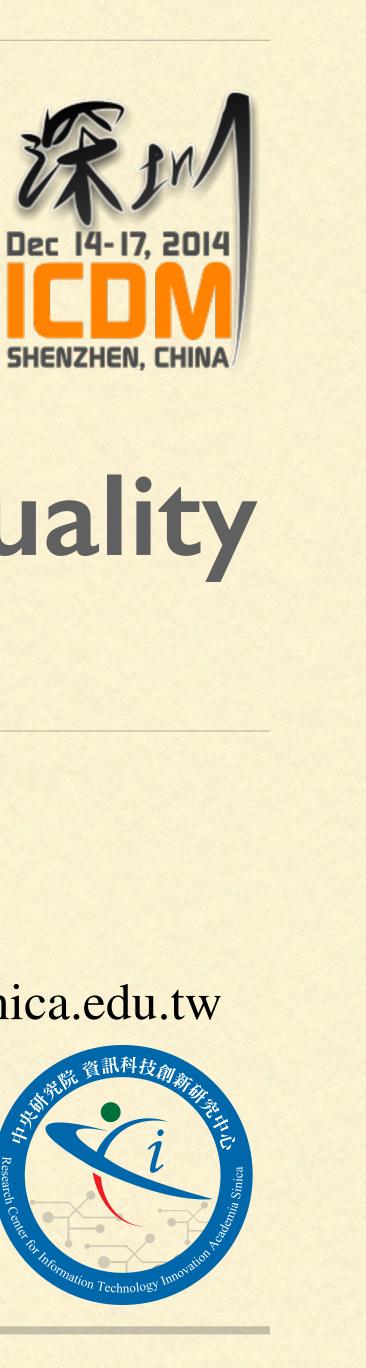
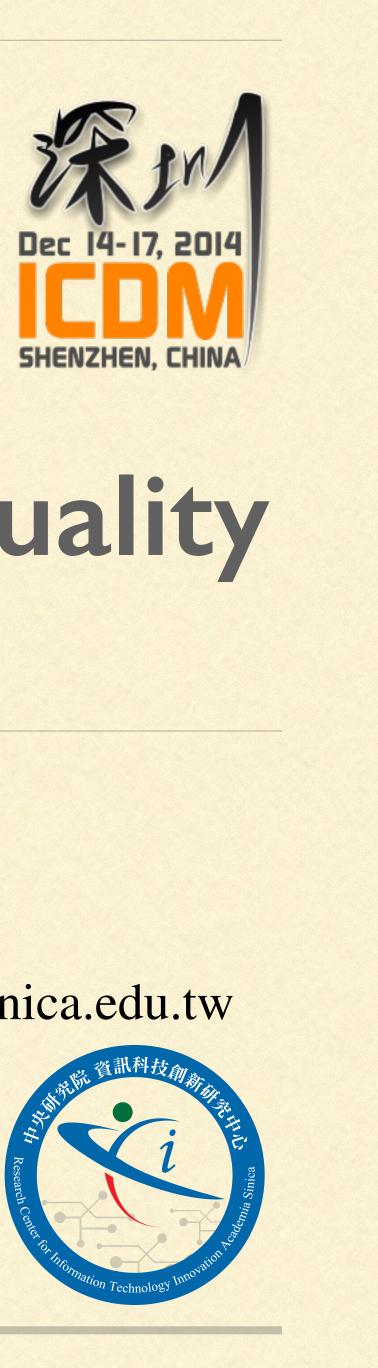
Leverage Item Popularity and Recommendation Quality via Cost-sensitive Factorization Machines

Chih-Ming Chen*[†], Hsin-Ping Chen*, Ming-Feng Tsai* and Yi-Hsuan Yang[†] * Department of Computer Science, National Chengchi University, Taiwan [†]Research Center for Information Technology Innovation, Academia Sinica, Taiwan Email: cmchen@citi.sinica.edu.tw, s10019@cs.nccu.edu.tw, mftsai@cs.nccu.edu.tw, yang@citi.sinica.edu.tw

NATIONAL CHENGCHI UNIVERSITY





Highlights

- A Cost-sensitive Factorization Machine (FM)
- Two cost functions
- Experiments are conducted on a real-world dataset.

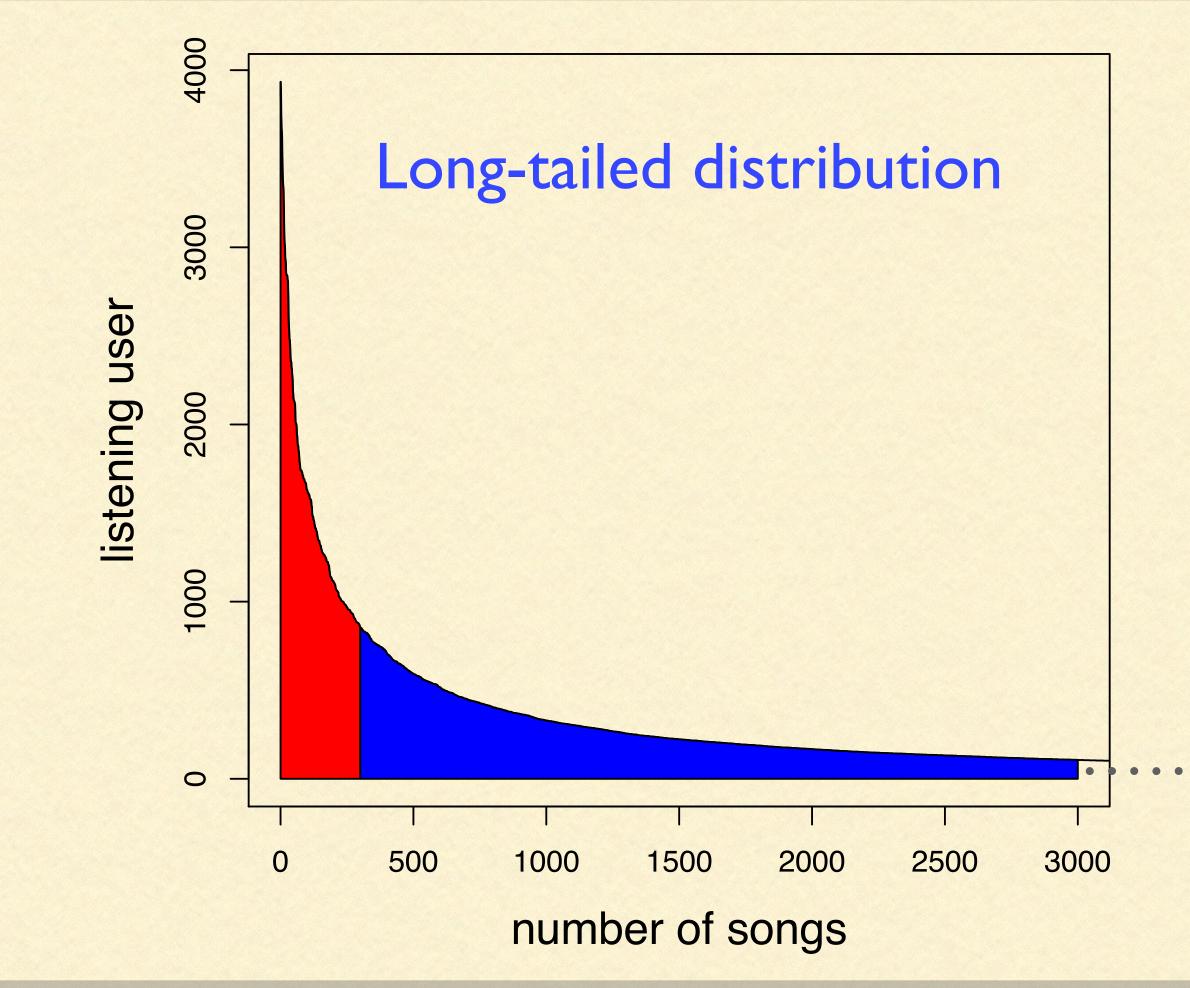
Recommendation Problem

Music Dataset Given a user's listening history

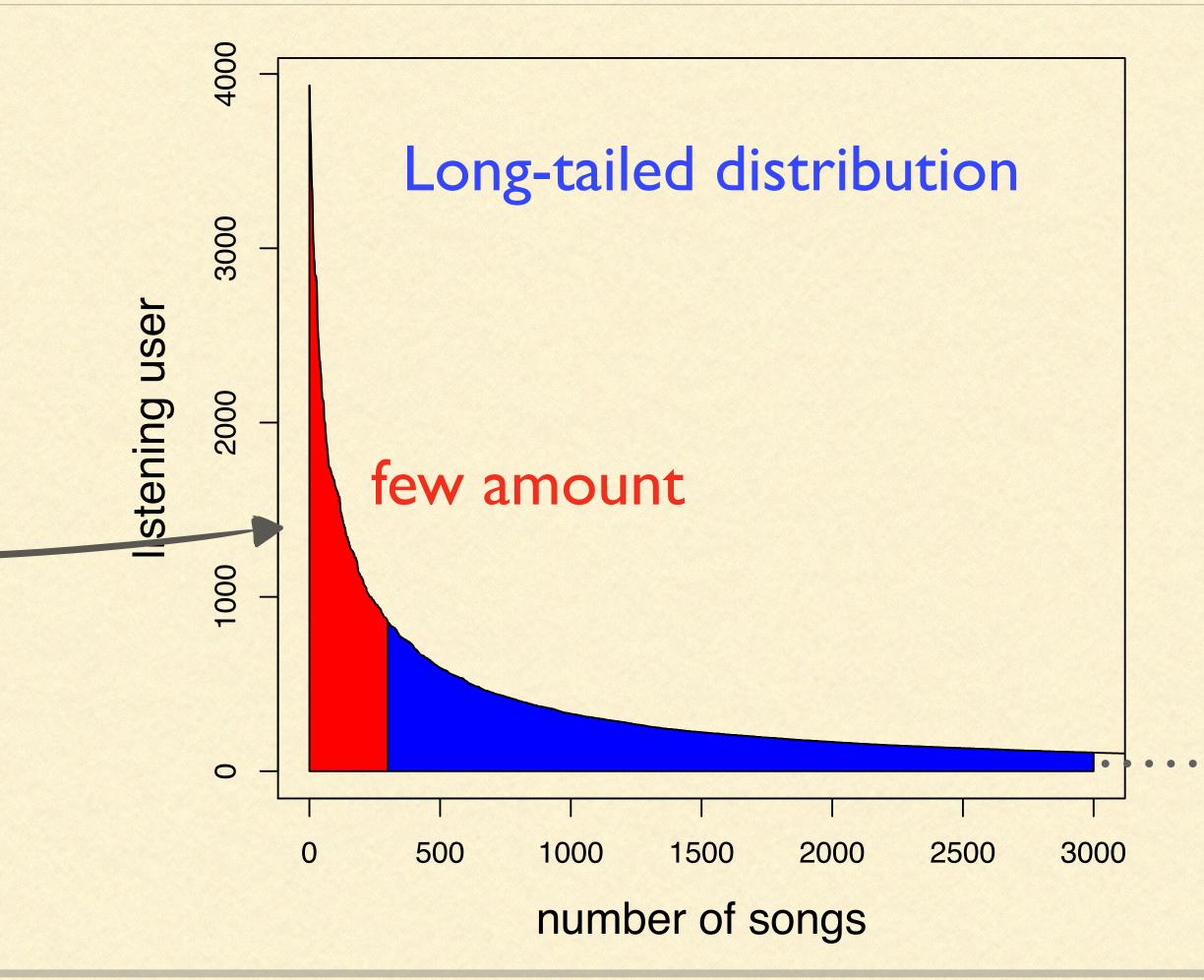
Generate a playlist (top-N recommendations)

 To get a sensible performance, a traditional recommendation algorithm tends to return popular songs

 To get a sensible performance, a traditional recommendation algorithm tends to return popular songs

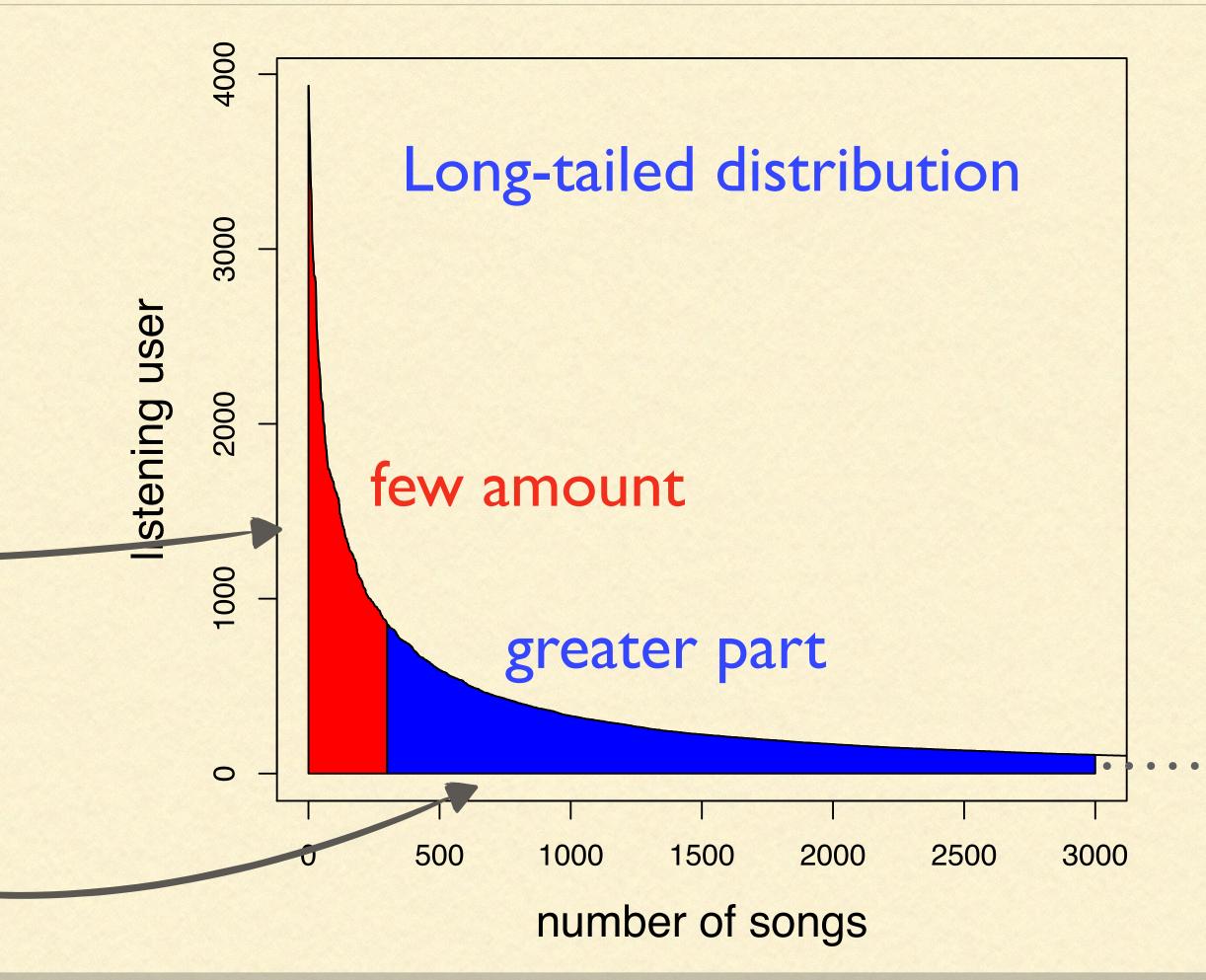


 To get a sensible performance, a traditional recommendation algorithm tends to return popular songs



 To get a sensible performance, a traditional recommendation algorithm tends to return popular songs

unpopular music



• To help users

- . . .

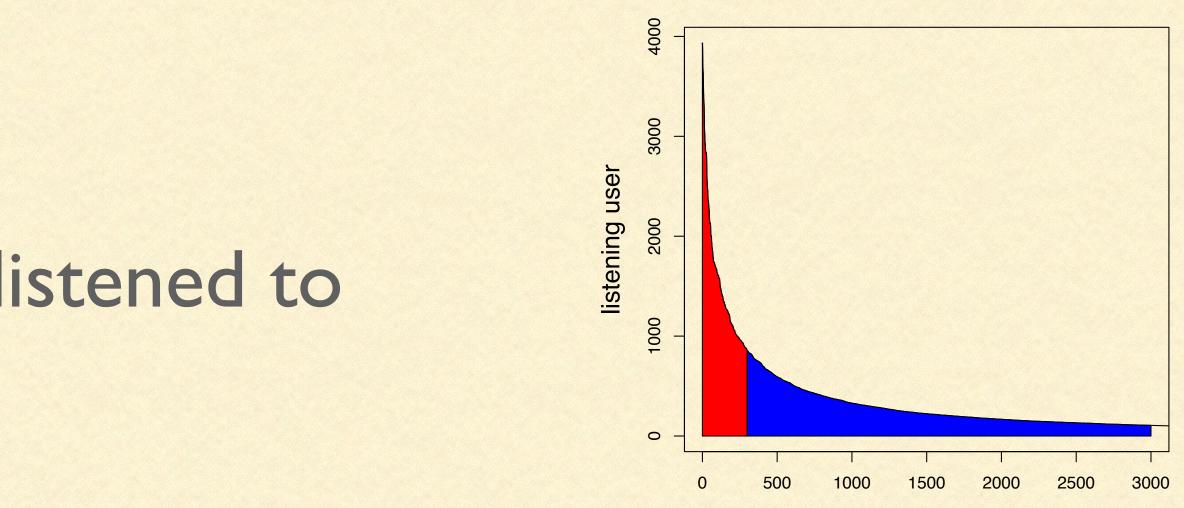
- discover novel music
- recall the music users have listened to

To help users discover novel music recall the music users have listened to

Our goal explore more novel music as much as possible

To help users discover novel music recall the music users have listened to

Our goal explore more novel music as much as possible



number of songs

isic as much as possible — which usually leans to unpopular music

 To help users - discover novel music - recall the music users have listened to

 Our goal - explore more novel music as much as possible

It's a trade-off between Item Popularity and Recommendation Quality. — which usually leans to unpopular music

• To help users - discover novel music - recall the music users have listened to

 Our goal - explore more novel music as much as possible - keep a reasonable performance at the same time

It's a trade-off between Item Popularity and Recommendation Quality.

Problem — Music Recommendation

Music Dataset Given a user's listening history

Generate a playlist

I. Explore novel music 2. Keep a Reasonable Performance

Highlights

A Cost-sensitive Factorization Machine (FM)

Two cost functions

• Experiments are conducted on a real-world dataset.

Highlights

• A Cost-sensitive Factorization Machine (FM)

Two cost functions

• Experiments are conducted on a real-world dataset.

Cost-sensitive Learning + FM

Recommendation Algorithm

• Factorization Machines [Rendle 2012]

 $\hat{y}(\mathbf{x}) := w_0 + \sum^p w_j x_j + \sum^p \sum^p x_j x_{j'} \sum^k v_{j,f} v_{j',f}$ j=1 j=1 j'=j+1 f=1

Recommendation Algorithm

• Factorization Machines [Rendle 2012]

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{j=1}^p w_j x_j + \sum_{j=1}^p w_{j-1} x_j + \sum_{j=1}^p w_j x_j +$$

Linear Regression

 $\sum_{j'=j+1}^{p} x_{j} x_{j'} \sum_{f=1}^{k} v_{j,f} v_{j',f}$

Recommendation Algorithm

• Factorization Machines [Rendle 2012]

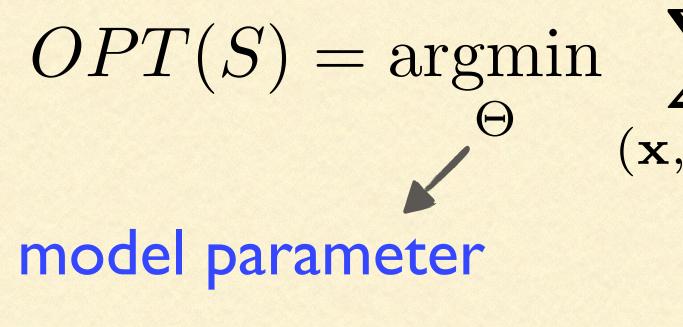
$$\hat{y}(\mathbf{x}) := w_0 + \sum_{j=1}^p w_j x_j + \sum_{j=1}^p w_{j-1} x_j$$

Linear Regression

 $\sum_{j'=j+1}^{p} x_j x_{j'} \sum_{f=1}^{k} v_{j,f} v_{j',f}$

Matrix Factorization / Latent Topic

Objective Function - Coordinate Descent

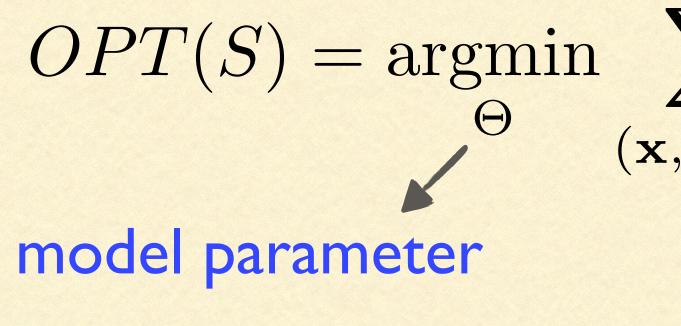


minimize the entire loss

 $OPT(S) = \underset{\Theta}{\operatorname{argmin}} \sum_{(\mathbf{x}, y) \in S} l(\hat{y}(x|\Theta), y) + \sum_{\theta \in \Theta} \lambda_{\theta} \theta^{2}$

regularization term

Objective Function - Coordinate Descent



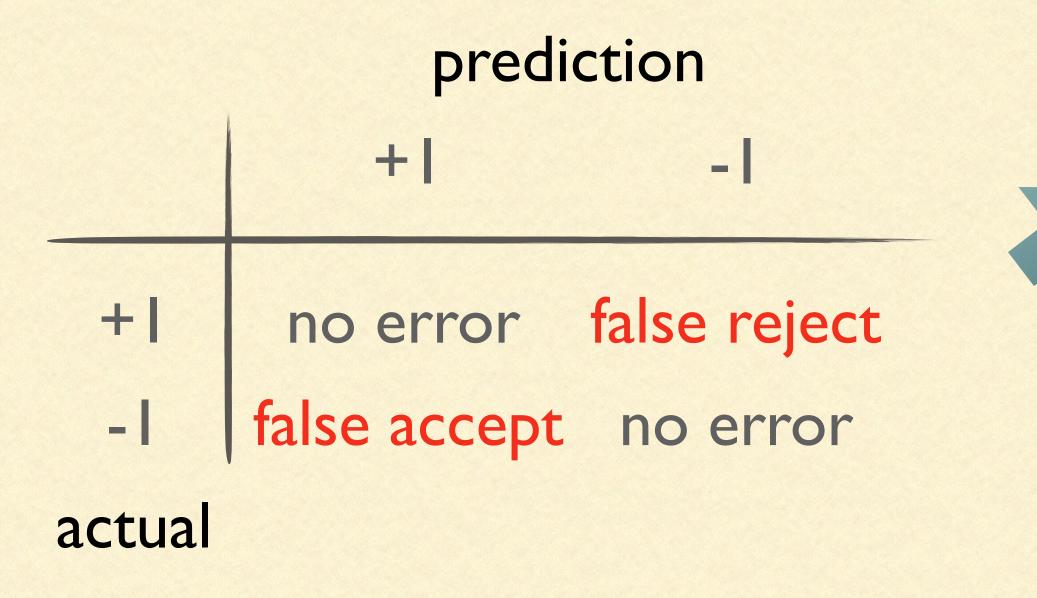
minimize the entire loss

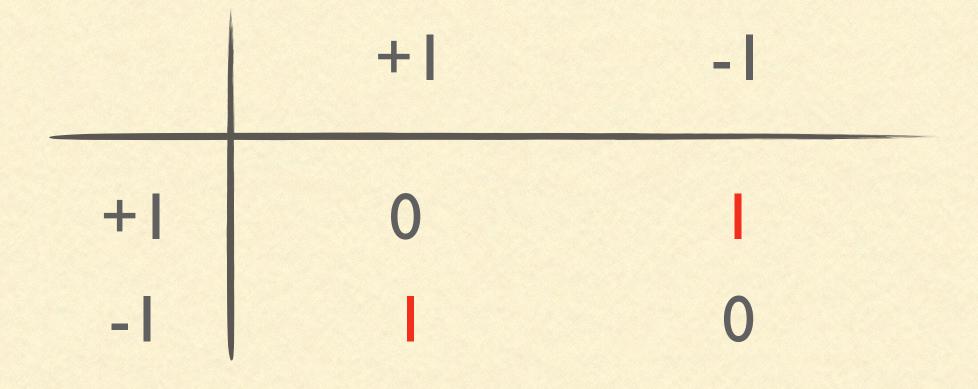
 $OPT(S) = \underset{\Theta}{\operatorname{argmin}} \sum_{(\mathbf{x}, y) \in S} l(\hat{y}(x|\Theta), y) + \sum_{\theta \in \Theta} \lambda_{\theta} \theta^{2}$

regularization term

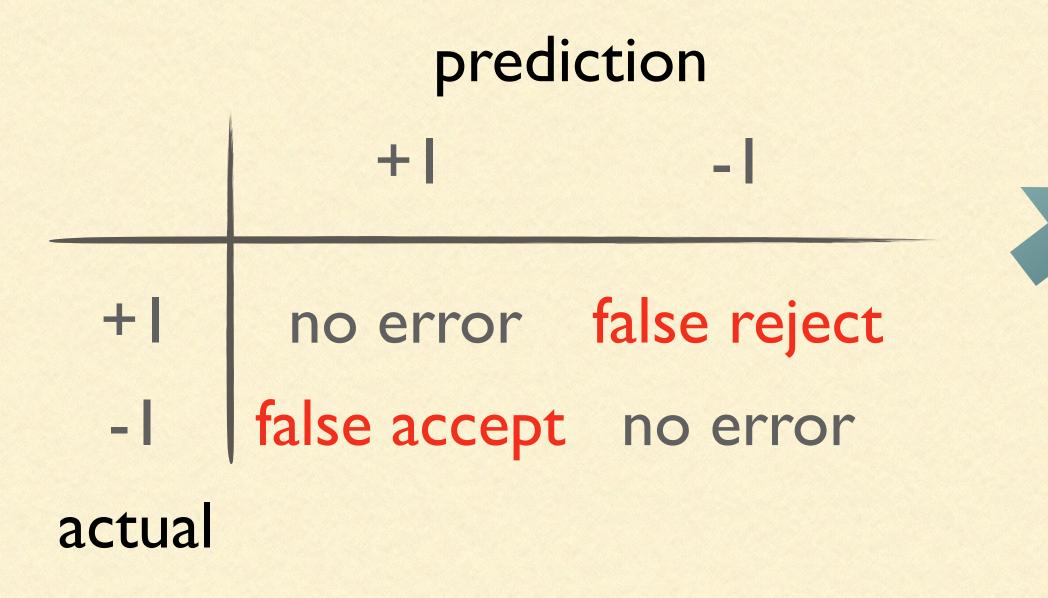
+ Cost-Sensitive Learning

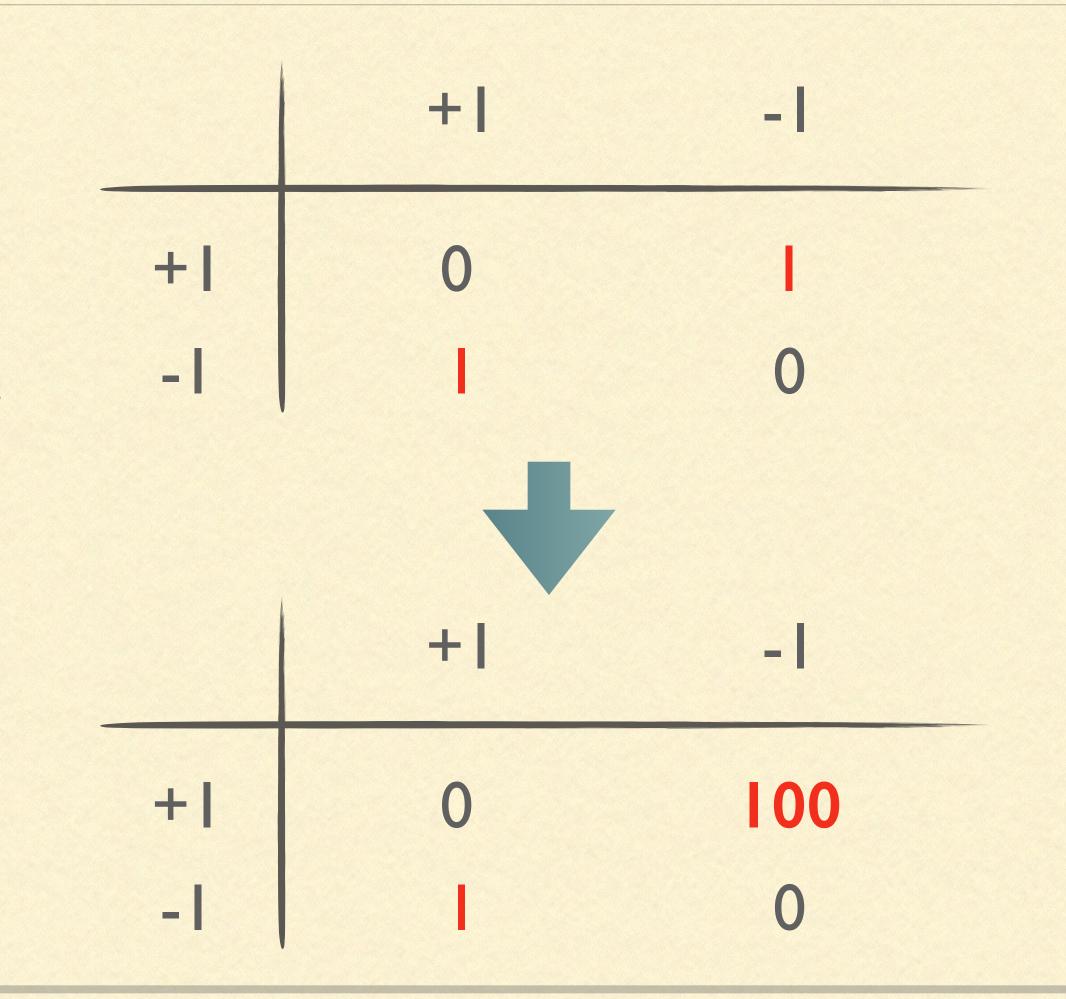
Traditional Cost



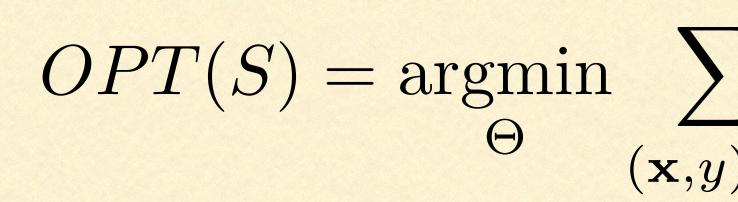


Cost-Sensitive Learning





Coordinate Descent with Cost-Sensitive Learning



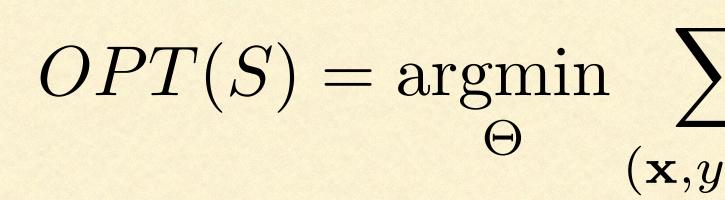
each record has its own penalty value

$$\sum_{y)\in S} l(\hat{y}(x|\Theta), y) + \sum_{\theta\in\Theta} \lambda_{\theta}\theta^{2}$$

$$\downarrow$$

$$l_{c}(\hat{y}, y) = c_{\mathbf{x}}\hat{y} - y)^{2} \rightarrow \mathsf{RMSE}$$

Instance-level Cost-Sensitive Learning



 $\frac{\partial}{\partial \theta} OPT(S) = \sum 2(\hat{y}(x) - y)h_{\theta}(x)c_{\mathbf{x}} + 2\lambda_{\theta}\theta$ $(\mathbf{x}, y) \in S$

$$\sum_{y)\in S} l(\hat{y}(x|\Theta), y) + \sum_{\theta\in\Theta} \lambda_{\theta}\theta^{2}$$
$$\downarrow$$
$$l_{c}(\hat{y}, y) = c_{\mathbf{x}}(\hat{y} - y)^{2}$$
$$\downarrow$$

 $\theta^* = -\frac{\sum_{(\mathbf{x},y)\in S} (g_{(\theta)}(\mathbf{x}) - y) h_{\theta}(x) c_{\mathbf{x}}}{\sum_{(\mathbf{x},y)\in S} h_{\theta}^2(x) c_{\mathbf{x}} + \lambda_{\theta}}$

Highlights

A Cost-sensitive Factorization Machine (FM)

Two cost functions

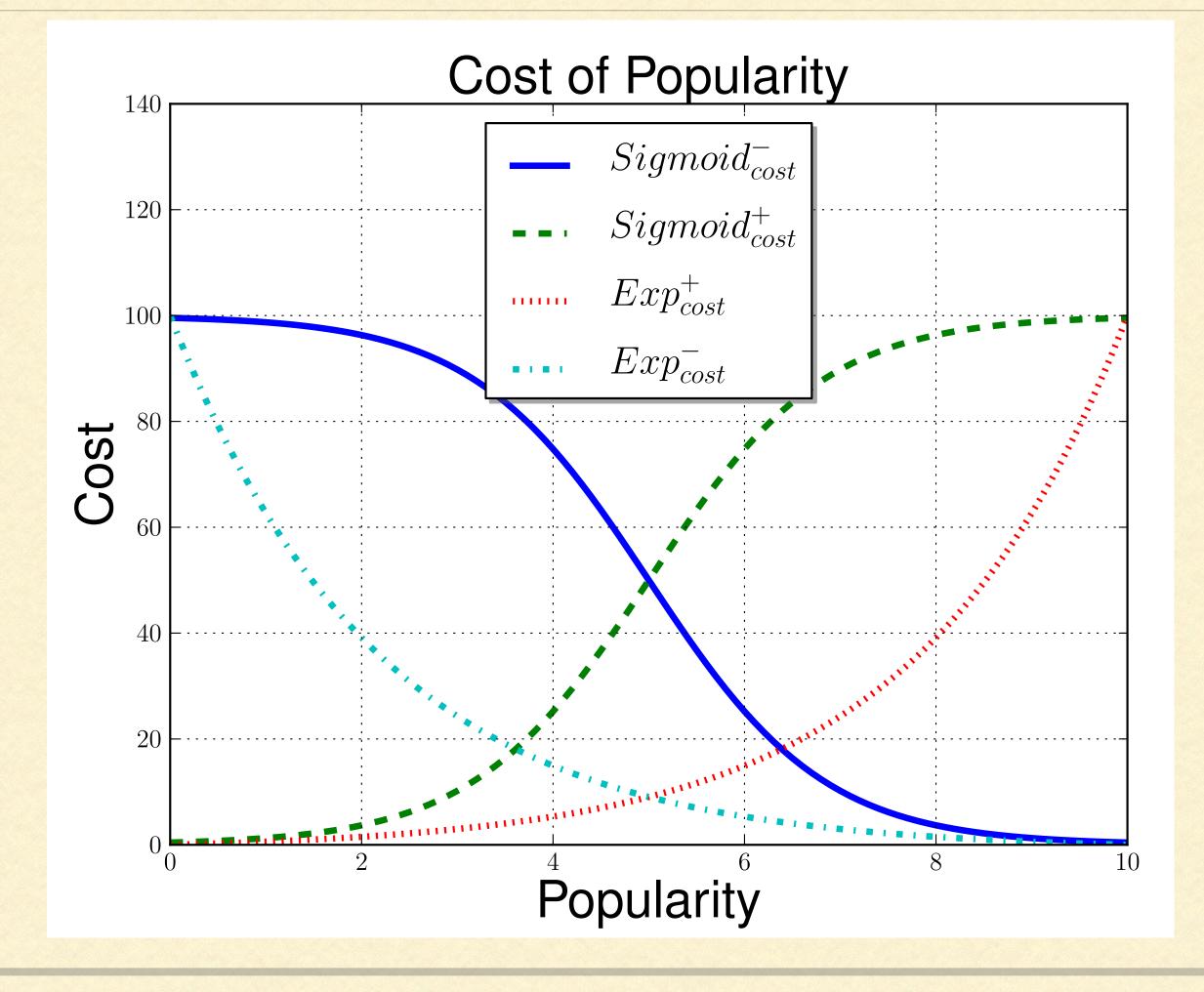
• Experiments are conducted on a real-world dataset.

Cost Function

$$Sigmoid_{cost}(p_{\mathbf{x}}) = \frac{c_{\max}}{1 + e^{\pm (4e\frac{p_{\mathbf{x}}}{p_{\max}} - 2e)}}$$

$Exp_{cost}(p_{\mathbf{x}}) = e^{\pm (\frac{p_{\mathbf{x}}}{p_{\max}}) \log w_{\max}}$

$\frac{\partial}{\partial \theta} OPT(S) = \sum_{(\mathbf{x}, y) \in S} 2(\hat{y}(x) - y)h_{\theta}(x)c_{\mathbf{x}} + 2\lambda_{\theta}\theta$

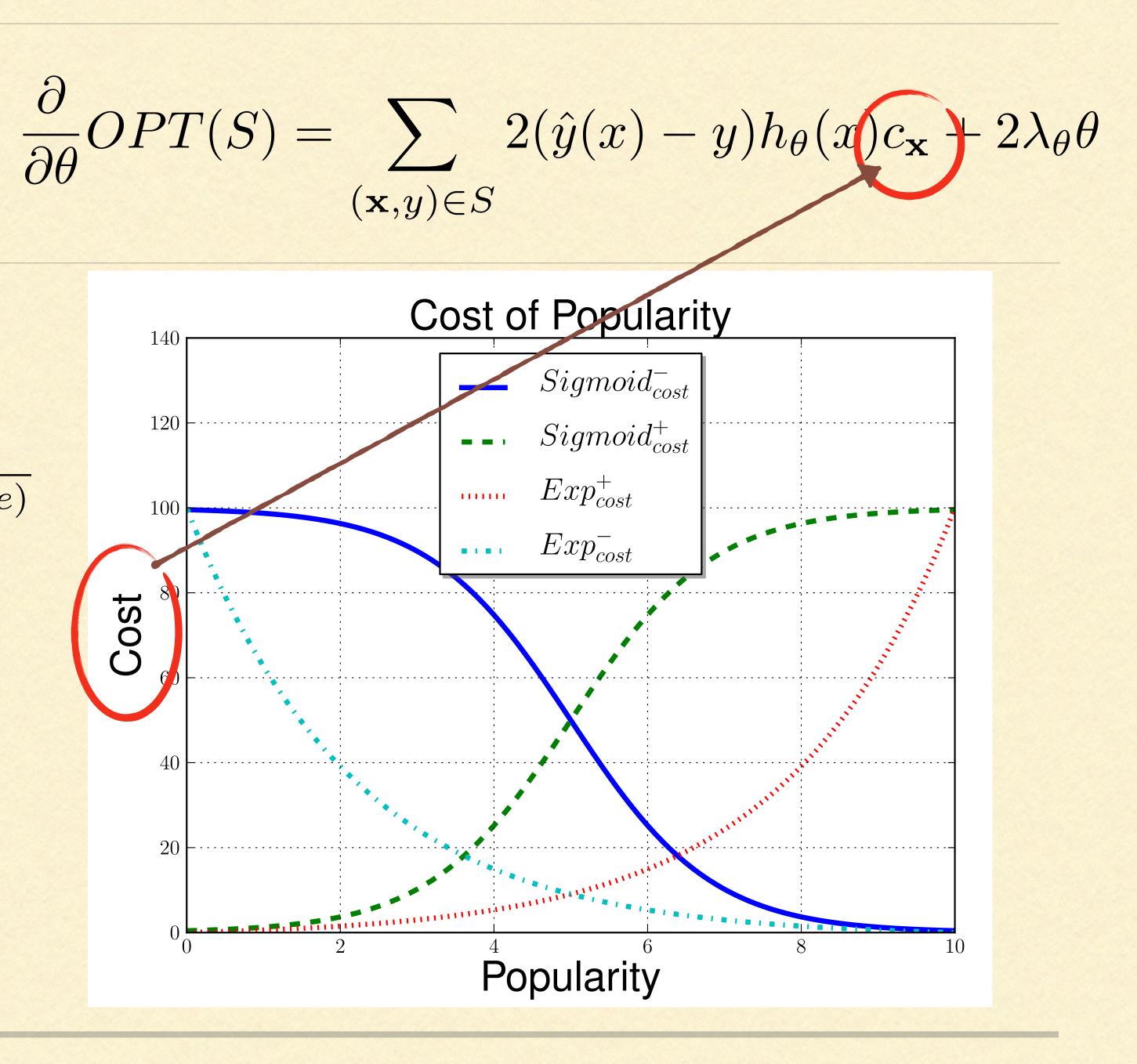




Cost Function

$$Sigmoid_{cost}(p_{\mathbf{x}}) = \frac{c_{\max}}{1 + e^{\pm (4e\frac{p_{\mathbf{x}}}{p_{\max}} - 2e)}}$$

$Exp_{cost}(p_{\mathbf{x}}) = e^{\pm (\frac{p_{\mathbf{x}}}{p_{\max}}) \log w_{\max}}$

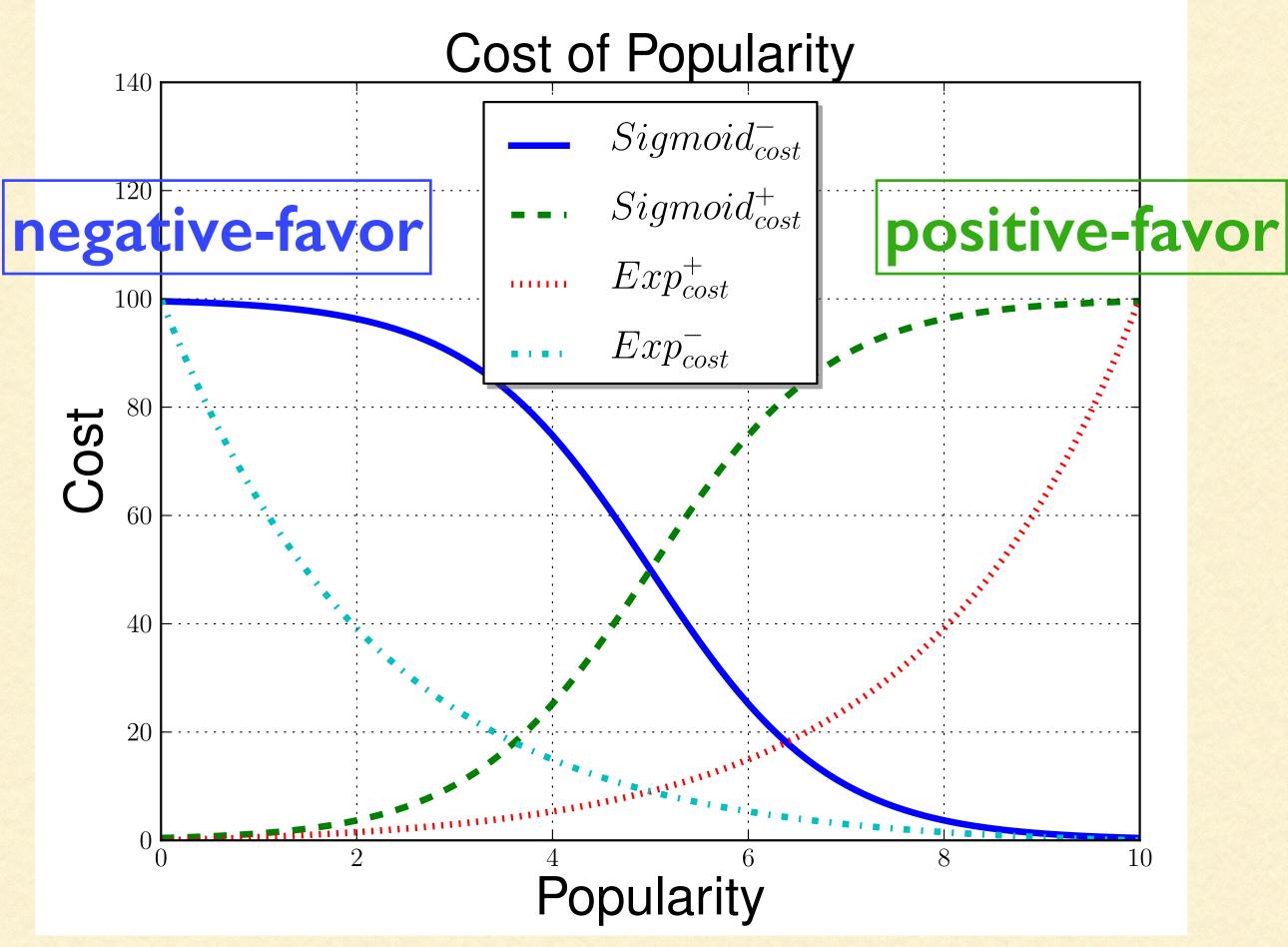


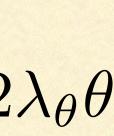
Cost Function

$$Sigmoid_{cost}(p_{\mathbf{x}}) = \frac{c_{\max}}{1 + e^{\pm (4e\frac{p_{\mathbf{x}}}{p_{\max}} - 2e)}}$$

$Exp_{cost}(p_{\mathbf{x}}) = e^{\pm (\frac{p_{\mathbf{x}}}{p_{\max}}) \log w_{\max}}$

$\frac{\partial}{\partial \theta} OPT(S) = \sum_{(\mathbf{x}, y) \in S} 2(\hat{y}(x) - y)h_{\theta}(x)c_{\mathbf{x}} + 2\lambda_{\theta}\theta$





Highlights

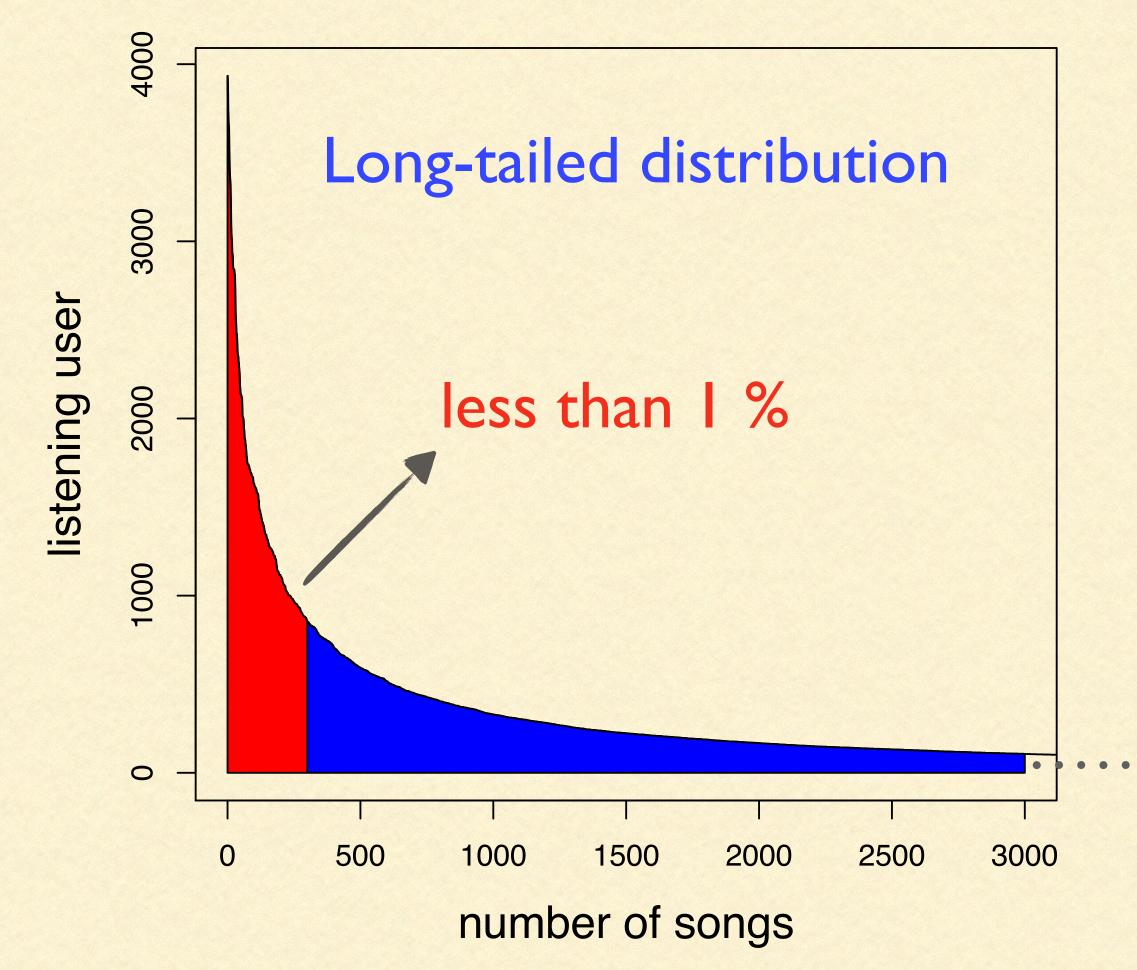
A Cost-sensitive Factorization Machine (FM)

Two cost functions

Experiments are conducted on a real-world dataset.

Dataset

KKBOX-5K 5,000 users 30,000 songs 1,800,000 listening records



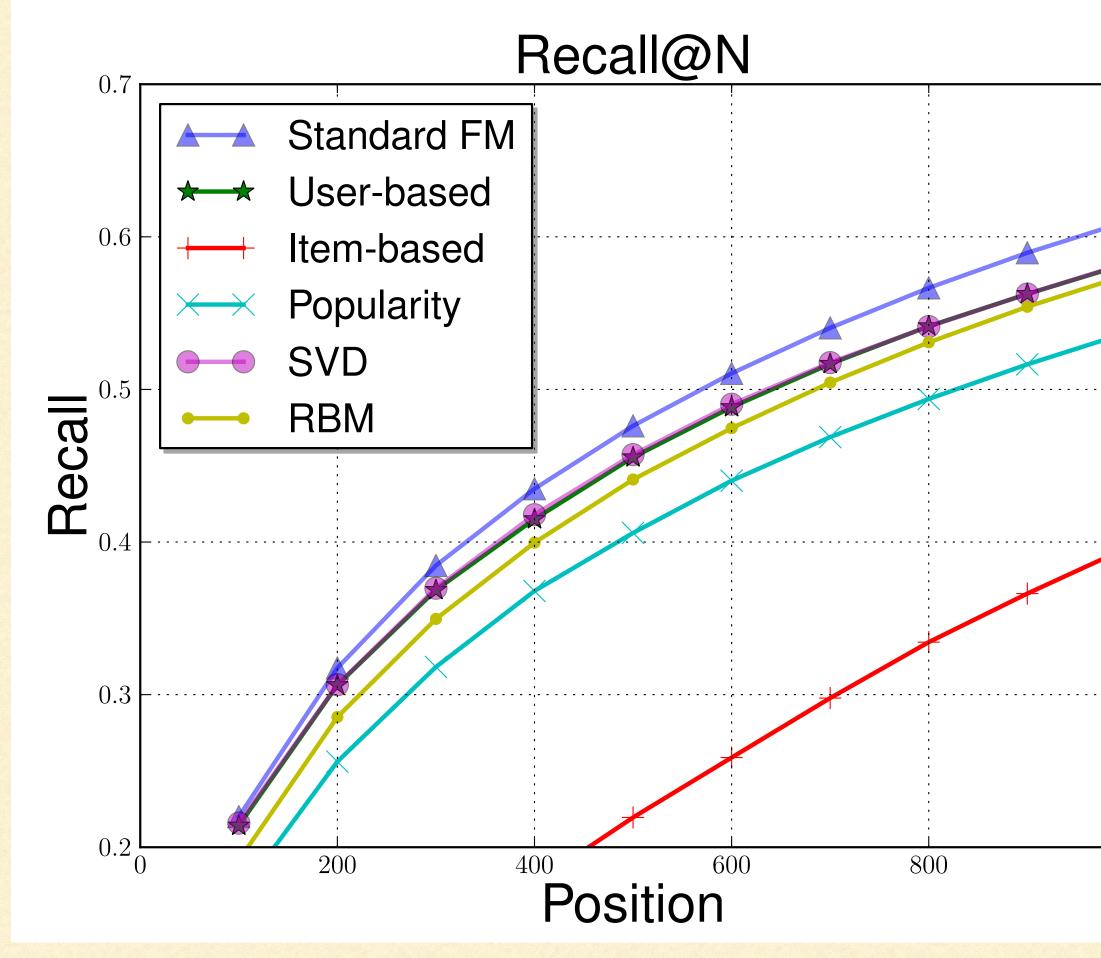
Performance Measurement

SatisfyI. Explore novel music2. Keep a Reasonableas much as possiblePerformance

Performance Measurement

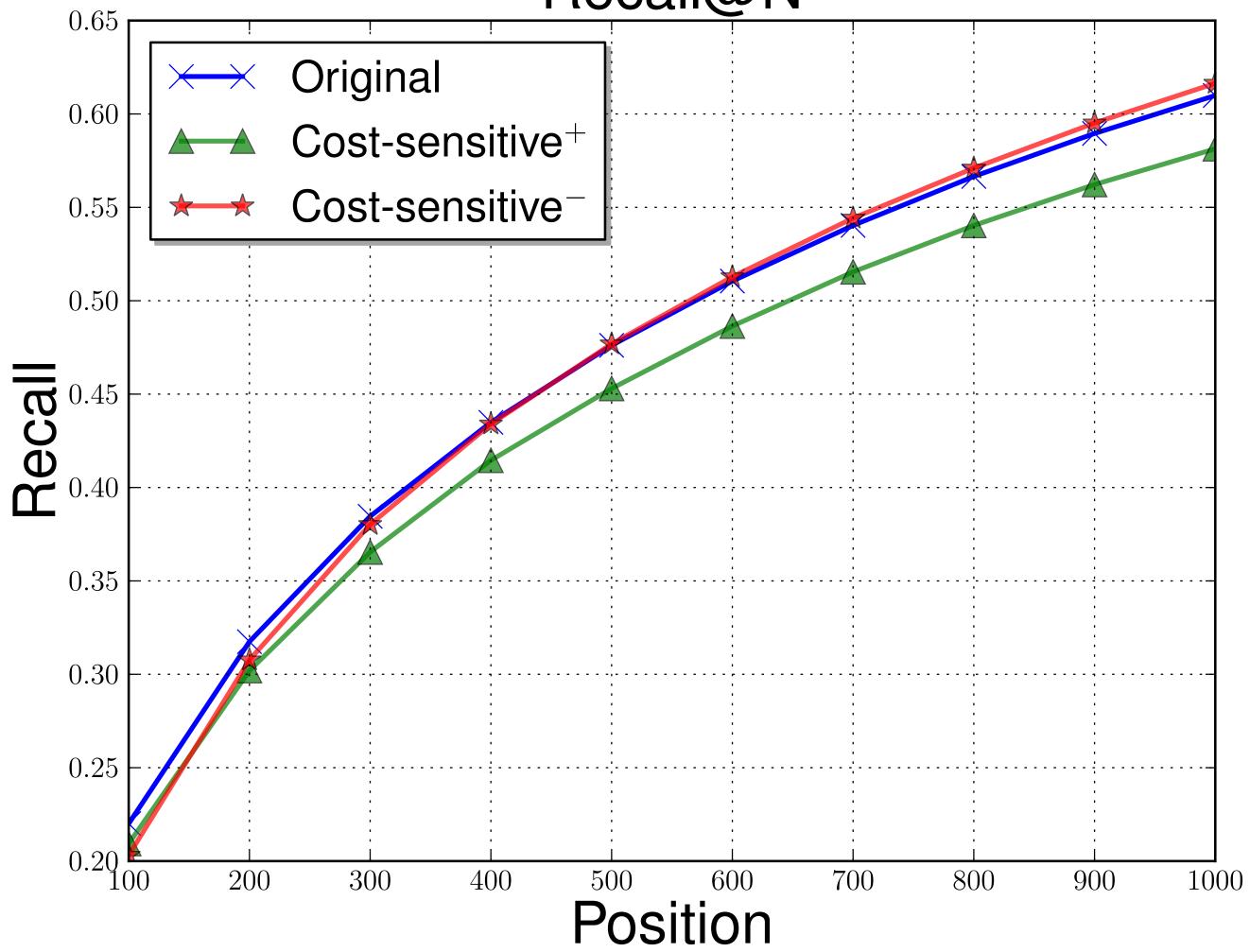
I. Explore novel music **2.** Keep a Reasonable Satisfy as much as possible Performance **Average Popularity** Recall (number of listening users)

Performance Comparison w/o Cost-Sensitive



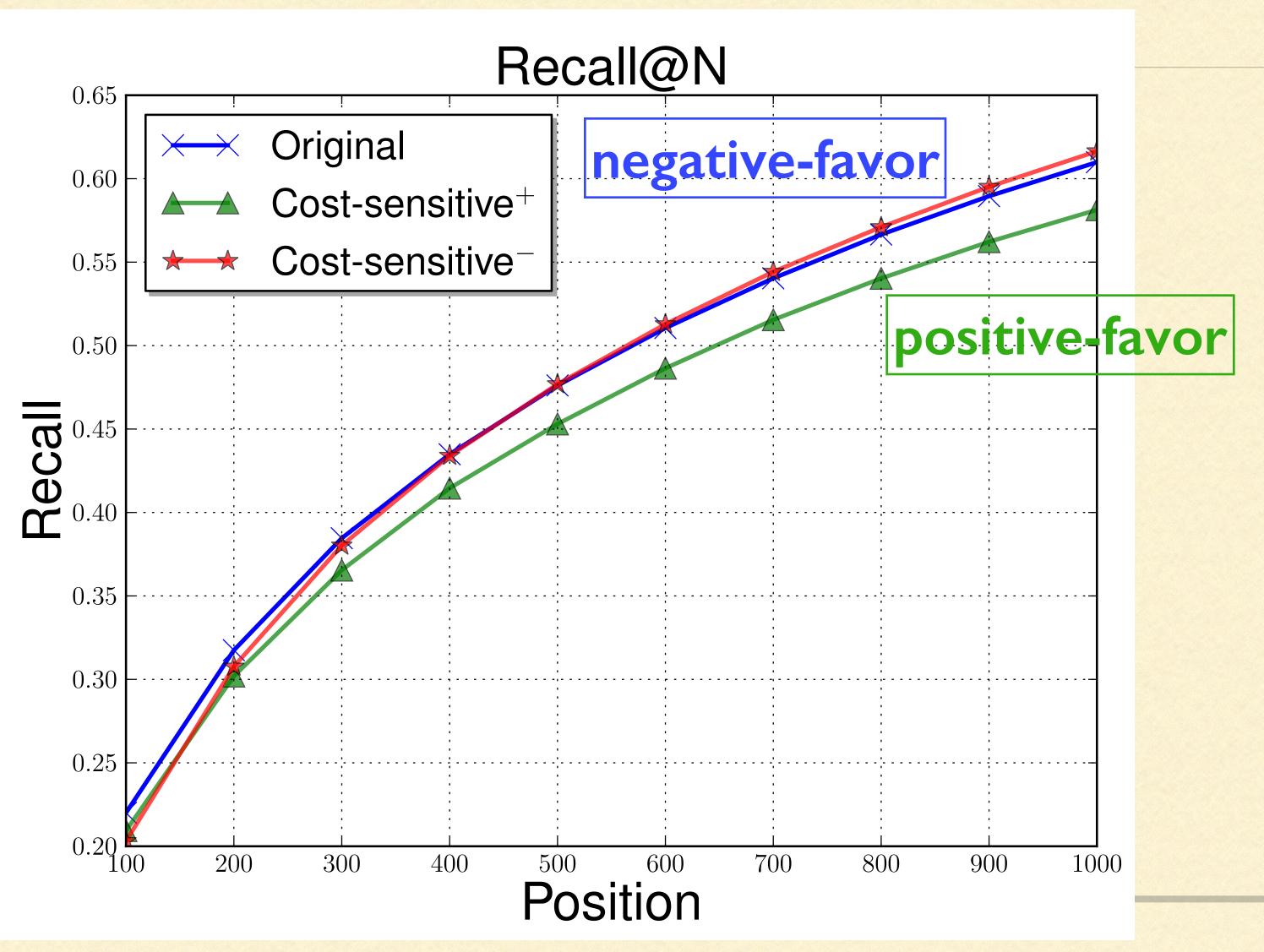
 Recommending only popular songs can obtain a feasible performance, which means users usually tend to listen to popular music

Original FM v.s. Cost-Sensitive FM

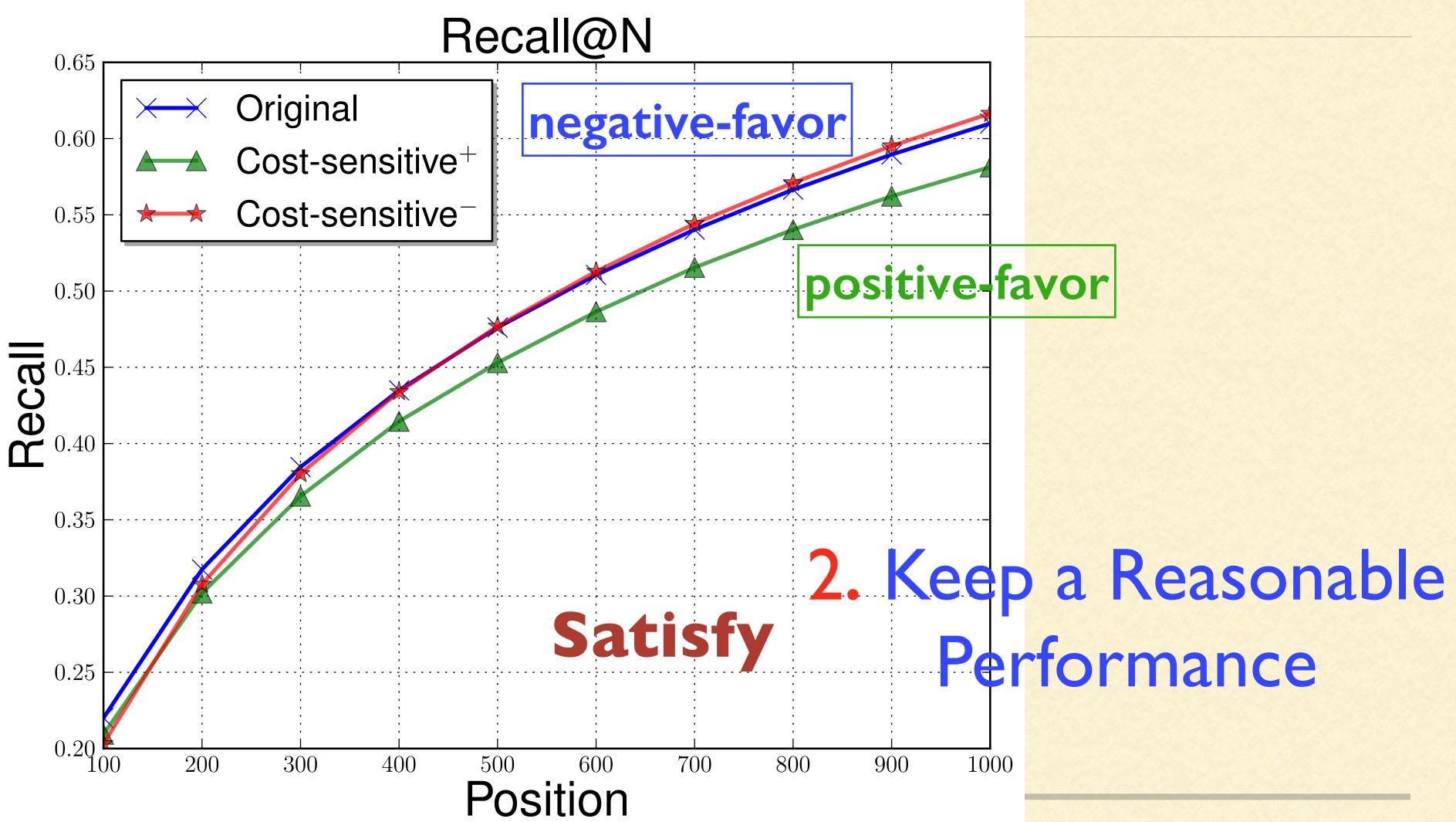


Recall@N

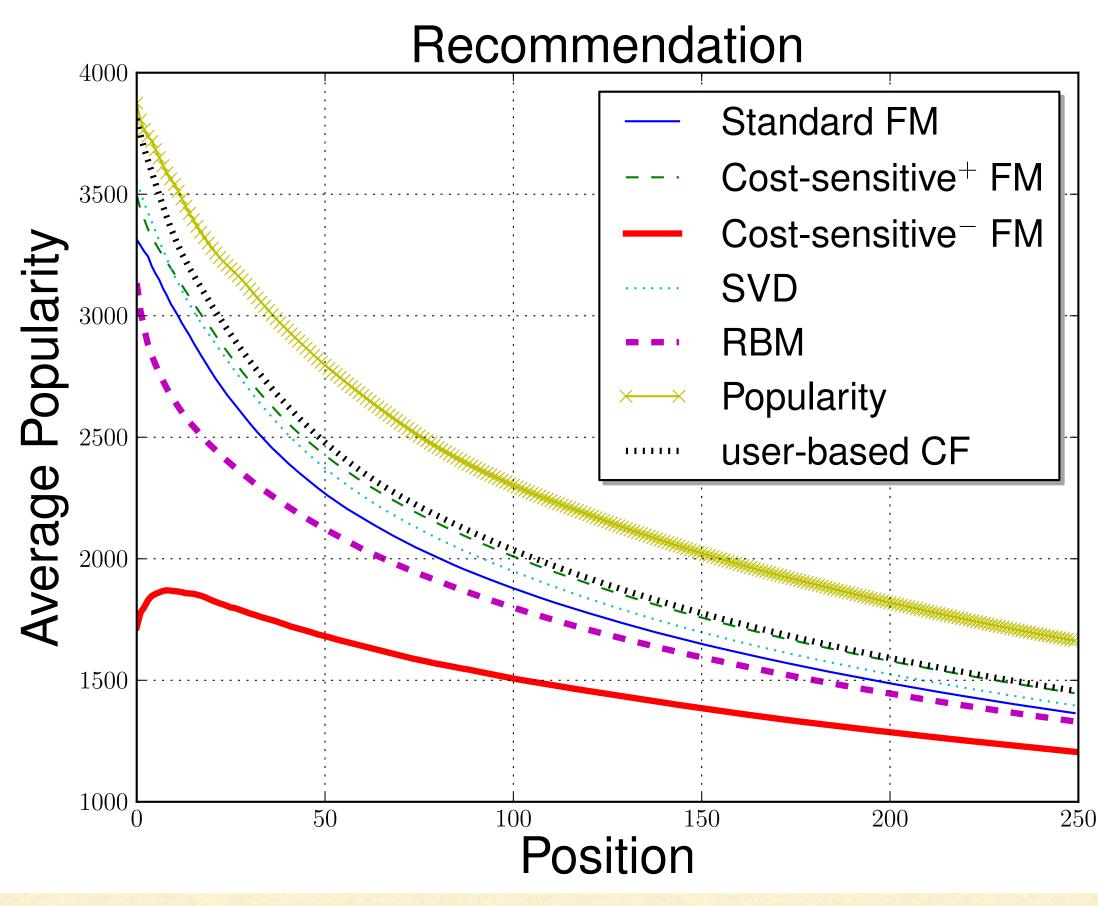
Original FM v.s. Cost-Sensitive FM



Original FM v.s. Cost-Sensitive FM

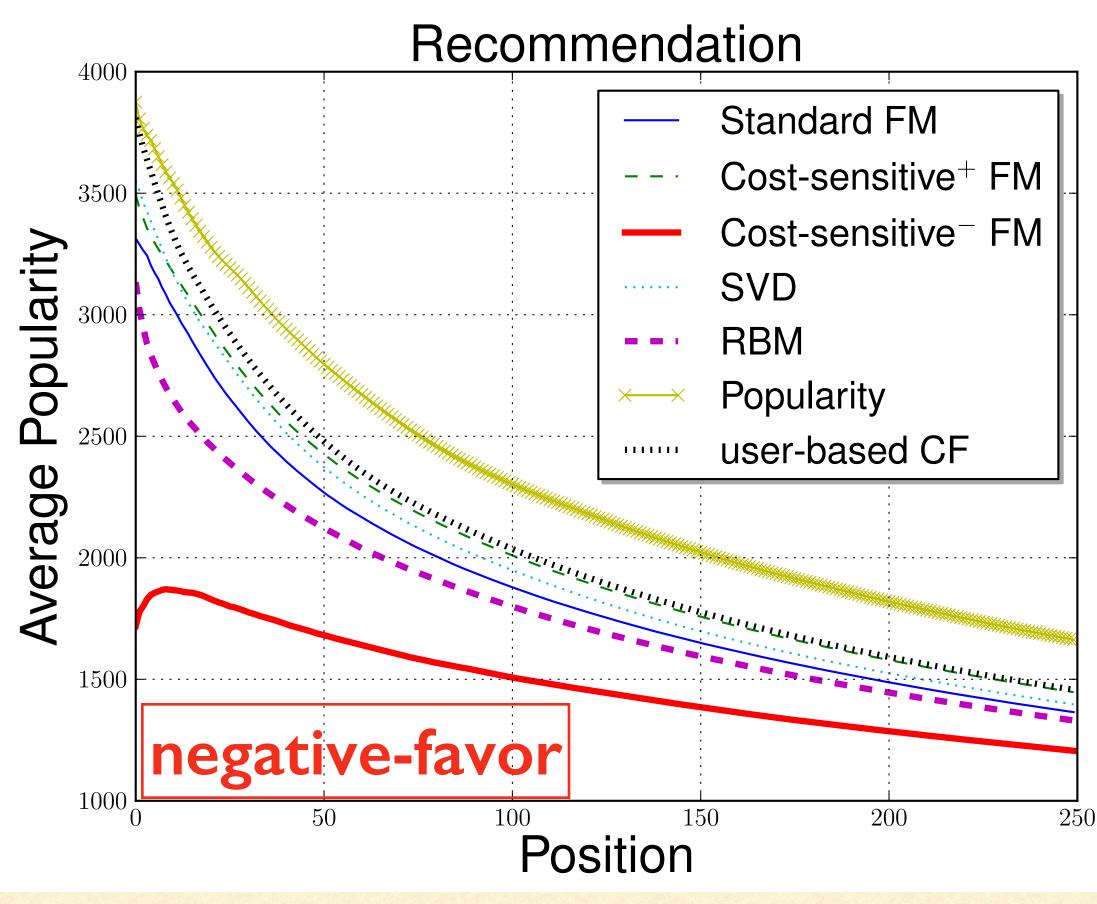


Average Popularity of Top-N Recommendations



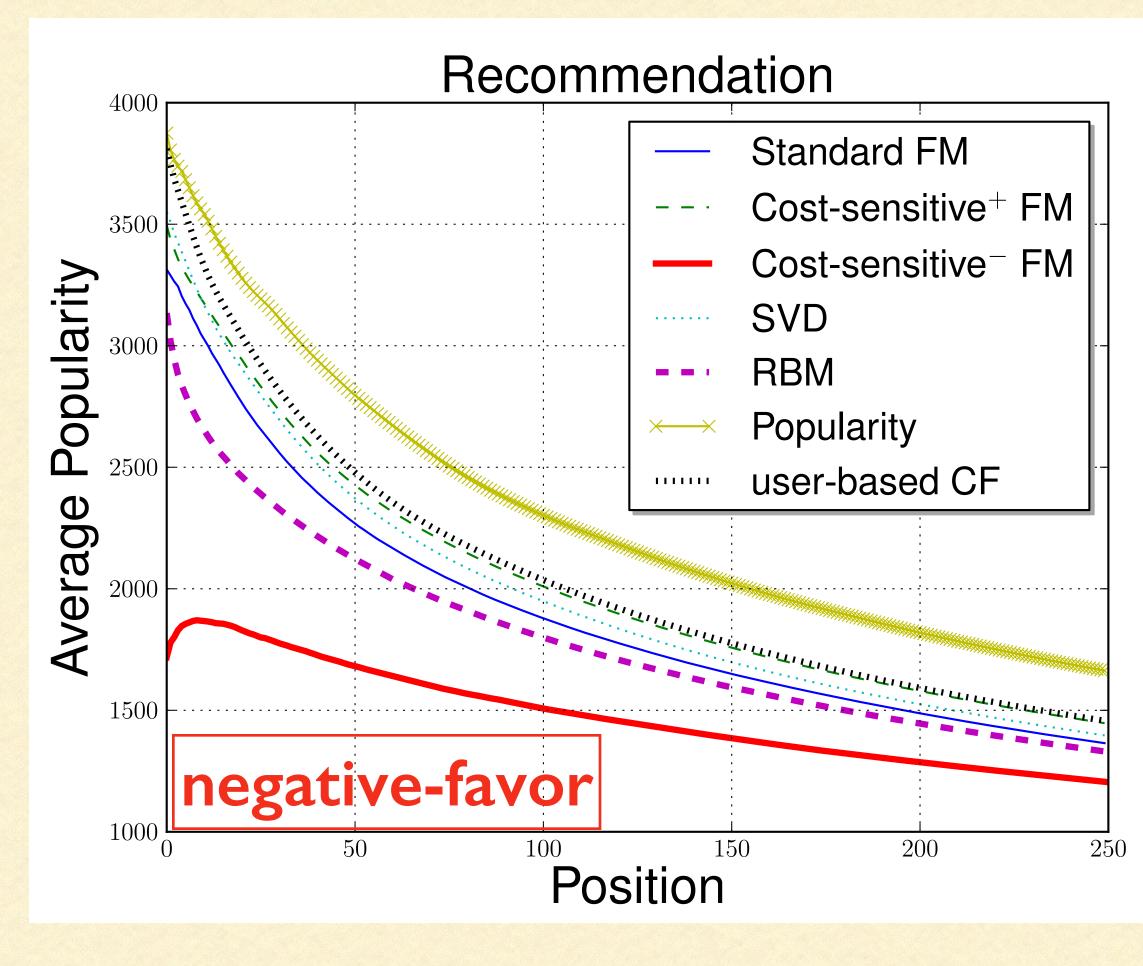
 Negative-Favour cost-sensitive FM could receive lower average popularity among top-N recommendations

Average Popularity of Top-N Recommendations



 Negative-Favour cost-sensitive FM could receive lower average popularity among top-N recommendations

Average Popularity of Top-N Recommendations



 Negative-Favour cost-sensitive FM could receive lower average popularity among top-N recommendations

Satisfy I. Explore novel music as much as possible

Conclusion

• This is a preliminary research about cost-sensitive learning for recommendation problem and FM model.

• The experimental result shows that the proposed instance-level cost-sensitive FM could achieve the different goals with different weighting functions.

- ChihMing chagnecandy at gmail.com

Any Question?