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Highlights

A Cost-sensitive Factorization Machine (FM)
Two cost functions

Experiments are conducted on a real-world dataset.
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The Goal of Recommendation

To help users
- discover novel music
- recall the music users have listened to

It’s a trade-off between
Our goal Item Popularity and Recommendation Quality.

- explore more novel music as much as possible
- keep a reasonable performance at the same time



Problem Music Recommendation

Music Dataset Given a user’s listening history

Goal Generate a playlist

|. Explore novel music 2. Keep a Reasonable
as much as possible Performance

Satisfy
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Recommendation Algorithm

Factorization Machines [Rendle 2012]
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Objective Function - Coordinate Descent

SIAME Ry argmm Z [(9(x|O),y) + Z Ao~
/ (x,y)€ES 0cO

v v

minimize the entire loss regularization term

model parameter

+ Cost-Sensitive Learning
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Cost-Sensitive Learning
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Coordinate Descent with Cost-Sensitive Learning

CIELLS) = argmm Z [(9(x|O),y) + Z Ao~
(x,y)€ES 0cO

v
l(9,9) S cxi — y)° - RMSE
v

each record has its own penalty value



Instance-level Cost-Sensitive Learning
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Highlights

* A Cost-sensitive Factorization Machine (FM)
* Two cost functions

* Experiments are conducted on a real-world dataset.
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Experiments are conducted on a real-world dataset.



| Dataset

4000

KKBOX-5K
5,000 users
30,000 songs
1,800,000 listening records

[<] kKkboX

Long-tailed distribution

3000

. less than | %

listening user
2000

1000

0 500 1000 1500 2000 2500 3000

number of songs



Performance Measurement

|. Explore novel music 2. Keep a Reasonable

Satisf
¥ as much as possible Performance



Performance Measurement

Satisfy |. Explore novel music 2. Keep a Reasonable

as much as possible Performance
Average Popularity Recall

(number of listening users)



Performance Comparison w/o Cost-Sensitive
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Conclusion

This is a preliminary research about cost-sensitive learning for
recommendation problem and FM model.

The experimental result shows that the proposed instance-level
cost-sensitive FM could achieve the different goals with different
weighting functions.
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