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Abstract—The accuracy of recommendation trends to be worse
towards the long tail of the popularity distribution of items, but
items in the long tail are generally considered to be valuable
as they occupy a majority part of entire data. In this paper,
we develop an instance-level cost-sensitive Factorization Machine
(FM) to tackle the problem. The new algorithm allows the
FM model to automatically leverage the trade-off between item
popularity and recommendation quality. Specifically, by adding
a cost criterion to the loss function, the FM model is now able to
discriminate the relative importance of popularity from massive
data. In addition, we convert several well-known functions into
the popularity weighting functions, thereby demonstrating that
the proposed method can fit the model parameters to various
kinds of measurements. In the experiments, we assess the perfor-
mance on a real-world music dataset which is collected from an
online music streaming service, KKBOX. The dataset contains
1,800,000 listening records that cover 5,000 users and 30,000
songs. The results show that, the proposed method not only keeps
the performance as primitive model but also avoids retrieving too
much popular music in the top recommendations.

I. INTRODUCTION

Most existing algorithms for recommendation ignore un-
popular or newly introduced items and focus on retrieving
items that have already been associated with too many ratings.
Although this strategy can get sensible performance, for real-
world applications it is desirable to recommend unpopular
items to the users. For instance, for music recommendation,
as people might have listened to those popular songs before,
it does not add too much value if a system recommends songs
the user already knows. In consequence, we cannot always
satisfy user needs by recommending popular items. The goal
of music recommender system is to help users discover new
music and recall the music users would like to listen to. In
light of this observation, we seek to develop a mechanism that
can avoid recommending too many popular songs at the top
of the recommendation list.

Recommending too popular items is also referred to as the
problem of lacking of novelty [1]. The main reason is that the
frequently appearing items occupy the great part of listening
records over the whole dataset, which is the so-called “long
tail” phenomena. Some recent studies started to focus on how
to deal with the phenomenon in recommendations [2]–[4]. In
short, popular items are indeed relevant but easy to be out-
of-dated. Consequently, many new techniques have been pro-
posed to mitigate popularity bias in recommendations [5]–[8].
Most work approaches this by seeking a balance between the
trading-off of accuracy and item popularity. In this paper, we
propose to tackle this problem by introducing the idea of the

cost-sensitive learning. In particular, given that Factorization
Machines (FMs) have been shown superior to many competing
methods for a variety of recommendation problems [9]–[13],
we propose a novel instance-level cost-sensitive Factorization
Machine algorithm in this paper. With the proposed algorithm,
we can effectively reduce the popularity bias without hurting
the quality of the recommendation.

Cost-sensitive learning is an learning technique that uti-
lizes different penalties for different error situations [14].
The idea is simple yet powerful in handling an imbalanced
dataset [15]–[17]. For instance, to alleviate the popularity
bias, we can increase the costs of unpopular items. Cost-
sensitive learning can be applied to various kinds of algorithms
including probabilistic model [18], tree model [19], support
vector regression for classification problem [20]. With the
similar approach, we embed the weighting function in the
loss function of FM model. Accordingly, the model is able
to automatically leverage the recommendation accuracy and
any specific features including the popularity.

We conduct our experiments on a music dataset which is
collected from KKBOX (http://www.kkbox.com), a leading on-
line music streaming service in Asia. Because of a partnership
with this company, we are able to have access to the listening
records of people who subscribe to the KKBOX service. From
the listening records we also identify the long tail problem. In
the experiments, two different weighting functions are used
for weighting the item popularity. The experimental results
show that, by using the unpopular music favor function, the
average popularity of the recommendation list can be greatly
reduced, especially in the top recommendations. Moreover, the
reduction of popular items does not affect the recommendation
quality in terms of recall.

The technical contributions of this paper include: 1) We
propose a cost-sensitive FM that is able to obtain a better
tradeoff between the recommendation accuracy and the pop-
ularity of recommended items. 2) Two weighting functions
are proposed, and the weighting function can be directly
embedded into the learning phase. 3) We provide experimental
result validates that the proposed method is able to reduce
the average popularity of recommendations and remain the
recommendation quality. Although the present paper might
be at best preliminary, it represents one of the first attempts
that introduces the idea of cost-sensitive learning to the FM
framework, to our best knowledge.

The paper is organized as follows. We present the FM
algorithm and the proposed cost-sensitive FM in Section II.



Highlights

• A Cost-sensitive Factorization Machine (FM)

• Two cost functions

• Experiments are conducted on a real-world dataset.



Recommendation Problem

Given a user’s listening history

Generate a playlist
(top-N recommendations)

Music Dataset

Goal



Classical Problem in Recommendation

• To get a sensible performance,  
a traditional recommendation 
algorithm tends to return 
popular songs



Classical Problem in Recommendation

0 500 1000 1500 2000 2500 3000

0
10

00
20

00
30

00
40

00

number of songs
lis

te
ni

ng
 u

se
r

Long-tailed distribution• To get a sensible performance,  
a traditional recommendation 
algorithm tends to return 
popular songs

………



Classical Problem in Recommendation

0 500 1000 1500 2000 2500 3000

0
10

00
20

00
30

00
40

00

number of songs
lis

te
ni

ng
 u

se
r

Long-tailed distribution• To get a sensible performance,  
a traditional recommendation 
algorithm tends to return 
popular songs

………

few amount



Classical Problem in Recommendation

0 500 1000 1500 2000 2500 3000

0
10

00
20

00
30

00
40

00

number of songs
lis

te
ni

ng
 u

se
r

Long-tailed distribution

unpopular music

• To get a sensible performance,  
a traditional recommendation 
algorithm tends to return 
popular songs

few amount

………

greater part



The Goal of Recommendation

• To help users 
- discover novel music  
- recall the music users have listened to 
- …



The Goal of Recommendation

• Our goal  
- explore more novel music as much as possible 

• To help users 
- discover novel music  
- recall the music users have listened to



The Goal of Recommendation

—  which usually leans to unpopular music

• Our goal  
- explore more novel music as much as possible 

• To help users 
- discover novel music  
- recall the music users have listened to

0 500 1000 1500 2000 2500 3000

0
10

00
20

00
30

00
40

00

number of songs

lis
te

ni
ng

 u
se

r



The Goal of Recommendation

It’s a trade-off between  
Item Popularity and Recommendation Quality. 

—  which usually leans to unpopular music

• Our goal  
- explore more novel music as much as possible 

• To help users 
- discover novel music  
- recall the music users have listened to



The Goal of Recommendation

• Our goal  
- explore more novel music as much as possible 
- keep a reasonable performance at the same time

It’s a trade-off between  
Item Popularity and Recommendation Quality. 

• To help users 
- discover novel music  
- recall the music users have listened to
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[Rendle et al. 2010] (for a set categorical variable), timeSVD++ [Koren 2009b], and
BPTF [Xiong et al. 2010] (for an additional numerical variable). For the basic matrix
factorization model, many learning and inference approaches have been studied—
among them, (stochastic) gradient descent, alternating least-squares (e.g., [Pilászy
et al. 2010]), variational Bayes [Lim and Teh 2007], and Markov Chain Monto Carlo
(MCMC) inference [Salakhutdinov and Mnih 2008a]. However, for more complex
factorization models, only the most simple learning method of gradient descent is
mostly available.

Even though factorization models have a high prediction quality in many applica-
tions, it is nontrivial to work with them. For each problem that cannot be described
with categorical variables, a new specialized model has to be derived, and a learning
algorithm has to be developed and implemented. This is very time-consuming, error-
prone, and only applicable for experts in factorization models.

On the other hand, in practice, the typical approach in machine learning is to de-
scribe data with feature vectors (a preprocessing step aka feature engineering) and to
apply a standard tool for example, LIBSVM [Chang and Lin 2011] for support vector
machines, a toolbox such as Weka [Hall et al. 2009], or a simple linear regression tool.
This approach is easy and applicable even for users without in-depth knowledge about
the underlying machine-learning models and inference mechanisms.

In this article, factorization machines (FM) [Rendle 2010] are presented. FMs com-
bine the high-prediction accuracy of factorization models with the flexibility of feature
engineering. The input data for FMs is described with real-valued features, exactly
like in other machine-learning approaches such as linear regression, support vector
machines, etc. However, the internal model of FMs uses factorized interactions be-
tween variables, and thus, it shares with other factorization models the high predic-
tion quality in sparse settings, like in recommender systems. It has been shown that
FMs can mimic most factorization models just by feature engineering [Rendle 2010].
This article summarizes the recent research on FMs, including learning algorithms
based on stochastic gradient descent, alternating least-squares, and Bayesian infer-
ence using MCMC. FMs and all presented algorithms are available in the publicly
available software tool LIBFM. With LIBFM, applying factorization models is as easy
as applying standard tools, such as SVMs or linear regression.

The article is structured as follows: (1) the FM model and its learning algorithms
that are available in LIBFM are introduced; (2) several examples, for input data are
given, and the relation to specialized factorization models is shown; (3) the LIBFM
software is briefly introduced; and (4) experiments are conducted.

2. FACTORIZATION MACHINE MODEL
Let us assume that the data of a prediction problem is described by a design matrix
X ∈ Rn×p, where the ith row xi ∈ Rp of X describes one case with p real-valued
variables and where yi is the prediction target of the ith case (see Figure 1 for an ex-
ample). Alternatively, one can describe this setting as a set S of tuples (x, y), where
(again) x ∈ Rp is a feature vector and y is its corresponding target. Such a represen-
tation with data matrices and feature vectors is common in many machine-learning
approaches, for example, in linear regression or support vector machines (SVM).

Factorization machines (FM) [Rendle 2010] model all nested interactions up to order
d between the p input variables in x using factorized interaction parameters. The
factorization machine (FM) model of order d = 2 is defined as

ŷ(x) := w0 +
p∑

j=1

w j x j +
p∑

j=1

p∑

j ′= j+1

x j x j ′

k∑

f=1

v j, f v j ′, f , (1)

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.
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ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.
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ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 57, Publication date: May 2012.
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Then we describe the experiment setting and results in Section
III. Finally, we conclude the paper in Section IV.

II. METHODOLOGY

To begin with, we introduce the standard FM model in
the first, and then to give a detailed description for the idea of
cost-sensitive FM afterward.

A. Standard FM

Factorization Machine is a generic framework that can
simulate many successful matrix-factorization-based models
via feature engineering. Given a design matrix X 2 Rn⇥p

and its record tuple (x, y), the standard 2-way factorization
machine is defined as:

ŷ(x) = w
0

+
pX

j=1

w
j

x
j

+
pX

j=1

pX

j

0
=j+1

ŵ
jj

0x
j

x
j

0 , (1)

where w
0

models the global bias, w
j

models the weight of
j-th features x

j

, and ŵ
jj

0 models the weight of each pair
of features. Since all features in FM model are transferred
into indicator variables, the framework may suffer from the
data sparsity problem. Rendle fuses the factorization technique
with the model; that is, the w

jj

0 is factorized into the pairs
of interaction parameters [10]: ŵ

jj

0 =
P

k

f=1

v
j,f

v
j

0
,f

. From
technical perspective, k is a hyperparameter that determines
the model complexity and allows the model to learn the latent
factors within the features. In brief, FM provides the promising
framework for the ranking problem. For more details, please
refer to the [9].

B. Cost-Sensitive FM

The cost sensitive learning technique is to give different
costs to each misclassified situation. Therefore the learning
model can be sensitive to the high weighting errors. Similar
ideas of using weighting functions with latent factor models
can be found in the literature [21]–[23]. We apply this mecha-
nism to the loss function of FM and make it feasible to leverage
the recommendation accuracy and target instances. In this
paper, we focus on recommending the relative unpopular music
because such unpopular songs are sometimes more likely to
satisfy the user need.

1) Cost-sensitive loss function: In the FM model, a typical
optimization task usually involves with a loss function l over
the observed data S:

OPT (S) = argmin
⇥

X

(x,y)2S

l(ŷ(x|⇥), y) +
X

✓2⇥

�
✓

✓2. (2)

L2 regularization (e.g. �) is applied to the function as well,
the goal of which is to prevent the model from over-fitting
problem. Specifically, ⇥ represents the model parameters
and the function is used to calculate the difference between
the prediction value ŷ and true value y. In this paper, the
least square loss is proposed as a cost weighting function:
l(ŷ, y) = (ŷ � y)2. We employ an intuitive way to extend the
loss function to cost-sensitive version. That is, enhancing the
loss effects by multiplying an additional cost:

l
c

(ŷ, y) = c
x

(ŷ � y)2. (3)

We use c
x

to denote the corresponding cost of instance x.
Based on the framework, the learning model trends to be fitted
more on the high weighting instances.

2) Learning methods: There are three different ways to
optimize the model parameters during the learning stage. We
describe how to embedded the cost-sensitive loss function in
each learning method below.

The first learning method is stochastic gradient descent
(SGD) [10]. For SGD learning, the model parameters of FM
can be updated by gradient descent methods:

✓  ✓ � ⌘

✓
@

@✓
l
c

(ŷ, y) + 2�
✓

✓

◆
, (4)

where ⌘ is the learning rate controlling the learning steps.

The second learning method is alternating least-squares
(ALS) [11]. ALS learning is another kind of approach that
obtains the optimal value by minimizing the total loss per
model parameter. The solution of regularized cost-sensitive
loss function can be found by the first derivative of the
optimization criterion.

@

@✓
OPT (S) =

X

(x,y)2S

2(ŷ(x)� y)h
✓

(x)c
x

+ 2�
✓

✓. (5)

Note that FM is a linear combination of two functions g
✓

and
h
✓

: ŷ(x) = g
✓

(x) + ✓h
✓

(x). Therefore the minimum value is
obtained while the derivative equals to 0:

✓⇤ = �
P

(x,y)2S

(g
(✓)

(x)� y)h
✓

(x)c
xP

(x,y)2S

h2

✓

(x)c
x

+ �
✓

. (6)

Finally, the third learning method is based on Markov
Chain Monte Carlo (MCMC) [24]. MCMC is an implemen-
tation of Bayesian inference technique that generates the dis-
tribution of parameters. The conditional posterior distributions
for each parameter is generated from N (eµ

✓

, e�2

✓

):

eµ
✓

=
↵✓

P
n

i=1

h2
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(x
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)c
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+ ↵
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h
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(x
i

)c
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, (7)
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↵
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n

i=1

h
✓

(x
i

)2c
x

+ �
✓

. (8)

where e
i

= y
i

� ŷ
i

(x
i

|✓) is the error term of ith record, ↵
is the precision of the likelihood, µ

✓

is the prior mean of the
parameter, and �

✓

is the prior precision of the parameter. Please
note that the solution would be equivalent to ALS when ✓⇤ =
eµ
✓

with ↵ = 1 and µ = 0.

Among these learning methods, both the ALS method and
the MCMC method update the model parameters according
to entire errors. Moreover, the MCMC method is an advanced
version of the ALS method by sampling the model parameters.
Therefore, although it is possible to experiment with all of
them, we opt for reporting the result of the MCMC method in
this paper. Another advantage of the MCMC method is that it
can learn recommendation model without giving the external
parameters such as learning rate and the regularization term.

minimize the entire loss regularization term

model parameter
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l(ŷ(x|⇥), y) +
X

✓2⇥

�
✓

✓2. (2)

L2 regularization (e.g. �) is applied to the function as well,
the goal of which is to prevent the model from over-fitting
problem. Specifically, ⇥ represents the model parameters
and the function is used to calculate the difference between
the prediction value ŷ and true value y. In this paper, the
least square loss is proposed as a cost weighting function:
l(ŷ, y) = (ŷ � y)2. We employ an intuitive way to extend the
loss function to cost-sensitive version. That is, enhancing the
loss effects by multiplying an additional cost:

l
c
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The first learning method is stochastic gradient descent
(SGD) [10]. For SGD learning, the model parameters of FM
can be updated by gradient descent methods:

✓  ✓ � ⌘

✓
@

@✓
l
c
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where ⌘ is the learning rate controlling the learning steps.

The second learning method is alternating least-squares
(ALS) [11]. ALS learning is another kind of approach that
obtains the optimal value by minimizing the total loss per
model parameter. The solution of regularized cost-sensitive
loss function can be found by the first derivative of the
optimization criterion.
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Finally, the third learning method is based on Markov
Chain Monte Carlo (MCMC) [24]. MCMC is an implemen-
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note that the solution would be equivalent to ALS when ✓⇤ =
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with ↵ = 1 and µ = 0.

Among these learning methods, both the ALS method and
the MCMC method update the model parameters according
to entire errors. Moreover, the MCMC method is an advanced
version of the ALS method by sampling the model parameters.
Therefore, although it is possible to experiment with all of
them, we opt for reporting the result of the MCMC method in
this paper. Another advantage of the MCMC method is that it
can learn recommendation model without giving the external
parameters such as learning rate and the regularization term.
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Coordinate Descent with Cost-Sensitive Learning

Then we describe the experiment setting and results in Section
III. Finally, we conclude the paper in Section IV.

II. METHODOLOGY

To begin with, we introduce the standard FM model in
the first, and then to give a detailed description for the idea of
cost-sensitive FM afterward.

A. Standard FM

Factorization Machine is a generic framework that can
simulate many successful matrix-factorization-based models
via feature engineering. Given a design matrix X 2 Rn⇥p

and its record tuple (x, y), the standard 2-way factorization
machine is defined as:
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where w
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models the global bias, w
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, and ŵ
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0 models the weight of each pair
of features. Since all features in FM model are transferred
into indicator variables, the framework may suffer from the
data sparsity problem. Rendle fuses the factorization technique
with the model; that is, the w
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0 is factorized into the pairs
of interaction parameters [10]: ŵ
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. From
technical perspective, k is a hyperparameter that determines
the model complexity and allows the model to learn the latent
factors within the features. In brief, FM provides the promising
framework for the ranking problem. For more details, please
refer to the [9].

B. Cost-Sensitive FM

The cost sensitive learning technique is to give different
costs to each misclassified situation. Therefore the learning
model can be sensitive to the high weighting errors. Similar
ideas of using weighting functions with latent factor models
can be found in the literature [21]–[23]. We apply this mecha-
nism to the loss function of FM and make it feasible to leverage
the recommendation accuracy and target instances. In this
paper, we focus on recommending the relative unpopular music
because such unpopular songs are sometimes more likely to
satisfy the user need.

1) Cost-sensitive loss function: In the FM model, a typical
optimization task usually involves with a loss function l over
the observed data S:
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L2 regularization (e.g. �) is applied to the function as well,
the goal of which is to prevent the model from over-fitting
problem. Specifically, ⇥ represents the model parameters
and the function is used to calculate the difference between
the prediction value ŷ and true value y. In this paper, the
least square loss is proposed as a cost weighting function:
l(ŷ, y) = (ŷ � y)2. We employ an intuitive way to extend the
loss function to cost-sensitive version. That is, enhancing the
loss effects by multiplying an additional cost:
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(ŷ � y)2. (3)

We use c
x

to denote the corresponding cost of instance x.
Based on the framework, the learning model trends to be fitted
more on the high weighting instances.

2) Learning methods: There are three different ways to
optimize the model parameters during the learning stage. We
describe how to embedded the cost-sensitive loss function in
each learning method below.

The first learning method is stochastic gradient descent
(SGD) [10]. For SGD learning, the model parameters of FM
can be updated by gradient descent methods:
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where ⌘ is the learning rate controlling the learning steps.

The second learning method is alternating least-squares
(ALS) [11]. ALS learning is another kind of approach that
obtains the optimal value by minimizing the total loss per
model parameter. The solution of regularized cost-sensitive
loss function can be found by the first derivative of the
optimization criterion.
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is the prior precision of the parameter. Please
note that the solution would be equivalent to ALS when ✓⇤ =
eµ
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with ↵ = 1 and µ = 0.

Among these learning methods, both the ALS method and
the MCMC method update the model parameters according
to entire errors. Moreover, the MCMC method is an advanced
version of the ALS method by sampling the model parameters.
Therefore, although it is possible to experiment with all of
them, we opt for reporting the result of the MCMC method in
this paper. Another advantage of the MCMC method is that it
can learn recommendation model without giving the external
parameters such as learning rate and the regularization term.
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B. Cost-Sensitive FM

The cost sensitive learning technique is to give different
costs to each misclassified situation. Therefore the learning
model can be sensitive to the high weighting errors. Similar
ideas of using weighting functions with latent factor models
can be found in the literature [21]–[23]. We apply this mecha-
nism to the loss function of FM and make it feasible to leverage
the recommendation accuracy and target instances. In this
paper, we focus on recommending the relative unpopular music
because such unpopular songs are sometimes more likely to
satisfy the user need.

1) Cost-sensitive loss function: In the FM model, a typical
optimization task usually involves with a loss function l over
the observed data S:
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L2 regularization (e.g. �) is applied to the function as well,
the goal of which is to prevent the model from over-fitting
problem. Specifically, ⇥ represents the model parameters
and the function is used to calculate the difference between
the prediction value ŷ and true value y. In this paper, the
least square loss is proposed as a cost weighting function:
l(ŷ, y) = (ŷ � y)2. We employ an intuitive way to extend the
loss function to cost-sensitive version. That is, enhancing the
loss effects by multiplying an additional cost:
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(ŷ, y) = c
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(ŷ � y)2. (3)

We use c
x

to denote the corresponding cost of instance x.
Based on the framework, the learning model trends to be fitted
more on the high weighting instances.

2) Learning methods: There are three different ways to
optimize the model parameters during the learning stage. We
describe how to embedded the cost-sensitive loss function in
each learning method below.

The first learning method is stochastic gradient descent
(SGD) [10]. For SGD learning, the model parameters of FM
can be updated by gradient descent methods:

✓  ✓ � ⌘

✓
@

@✓
l
c
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where ⌘ is the learning rate controlling the learning steps.

The second learning method is alternating least-squares
(ALS) [11]. ALS learning is another kind of approach that
obtains the optimal value by minimizing the total loss per
model parameter. The solution of regularized cost-sensitive
loss function can be found by the first derivative of the
optimization criterion.
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Finally, the third learning method is based on Markov
Chain Monte Carlo (MCMC) [24]. MCMC is an implemen-
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Among these learning methods, both the ALS method and
the MCMC method update the model parameters according
to entire errors. Moreover, the MCMC method is an advanced
version of the ALS method by sampling the model parameters.
Therefore, although it is possible to experiment with all of
them, we opt for reporting the result of the MCMC method in
this paper. Another advantage of the MCMC method is that it
can learn recommendation model without giving the external
parameters such as learning rate and the regularization term.
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Then we describe the experiment setting and results in Section
III. Finally, we conclude the paper in Section IV.
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the model complexity and allows the model to learn the latent
factors within the features. In brief, FM provides the promising
framework for the ranking problem. For more details, please
refer to the [9].

B. Cost-Sensitive FM

The cost sensitive learning technique is to give different
costs to each misclassified situation. Therefore the learning
model can be sensitive to the high weighting errors. Similar
ideas of using weighting functions with latent factor models
can be found in the literature [21]–[23]. We apply this mecha-
nism to the loss function of FM and make it feasible to leverage
the recommendation accuracy and target instances. In this
paper, we focus on recommending the relative unpopular music
because such unpopular songs are sometimes more likely to
satisfy the user need.

1) Cost-sensitive loss function: In the FM model, a typical
optimization task usually involves with a loss function l over
the observed data S:
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L2 regularization (e.g. �) is applied to the function as well,
the goal of which is to prevent the model from over-fitting
problem. Specifically, ⇥ represents the model parameters
and the function is used to calculate the difference between
the prediction value ŷ and true value y. In this paper, the
least square loss is proposed as a cost weighting function:
l(ŷ, y) = (ŷ � y)2. We employ an intuitive way to extend the
loss function to cost-sensitive version. That is, enhancing the
loss effects by multiplying an additional cost:
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We use c
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to denote the corresponding cost of instance x.
Based on the framework, the learning model trends to be fitted
more on the high weighting instances.

2) Learning methods: There are three different ways to
optimize the model parameters during the learning stage. We
describe how to embedded the cost-sensitive loss function in
each learning method below.

The first learning method is stochastic gradient descent
(SGD) [10]. For SGD learning, the model parameters of FM
can be updated by gradient descent methods:
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where ⌘ is the learning rate controlling the learning steps.

The second learning method is alternating least-squares
(ALS) [11]. ALS learning is another kind of approach that
obtains the optimal value by minimizing the total loss per
model parameter. The solution of regularized cost-sensitive
loss function can be found by the first derivative of the
optimization criterion.
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i

(x
i

|✓) is the error term of ith record, ↵
is the precision of the likelihood, µ

✓

is the prior mean of the
parameter, and �

✓

is the prior precision of the parameter. Please
note that the solution would be equivalent to ALS when ✓⇤ =
eµ
✓

with ↵ = 1 and µ = 0.

Among these learning methods, both the ALS method and
the MCMC method update the model parameters according
to entire errors. Moreover, the MCMC method is an advanced
version of the ALS method by sampling the model parameters.
Therefore, although it is possible to experiment with all of
them, we opt for reporting the result of the MCMC method in
this paper. Another advantage of the MCMC method is that it
can learn recommendation model without giving the external
parameters such as learning rate and the regularization term.
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cost-sensitive FM afterward.

A. Standard FM

Factorization Machine is a generic framework that can
simulate many successful matrix-factorization-based models
via feature engineering. Given a design matrix X 2 Rn⇥p

and its record tuple (x, y), the standard 2-way factorization
machine is defined as:
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ŵ
jj

0x
j

x
j

0 , (1)

where w
0

models the global bias, w
j

models the weight of
j-th features x

j

, and ŵ
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problem. Specifically, ⇥ represents the model parameters
and the function is used to calculate the difference between
the prediction value ŷ and true value y. In this paper, the
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2) Learning methods: There are three different ways to
optimize the model parameters during the learning stage. We
describe how to embedded the cost-sensitive loss function in
each learning method below.

The first learning method is stochastic gradient descent
(SGD) [10]. For SGD learning, the model parameters of FM
can be updated by gradient descent methods:
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The second learning method is alternating least-squares
(ALS) [11]. ALS learning is another kind of approach that
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Among these learning methods, both the ALS method and
the MCMC method update the model parameters according
to entire errors. Moreover, the MCMC method is an advanced
version of the ALS method by sampling the model parameters.
Therefore, although it is possible to experiment with all of
them, we opt for reporting the result of the MCMC method in
this paper. Another advantage of the MCMC method is that it
can learn recommendation model without giving the external
parameters such as learning rate and the regularization term.

Then we describe the experiment setting and results in Section
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factors within the features. In brief, FM provides the promising
framework for the ranking problem. For more details, please
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B. Cost-Sensitive FM

The cost sensitive learning technique is to give different
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ideas of using weighting functions with latent factor models
can be found in the literature [21]–[23]. We apply this mecha-
nism to the loss function of FM and make it feasible to leverage
the recommendation accuracy and target instances. In this
paper, we focus on recommending the relative unpopular music
because such unpopular songs are sometimes more likely to
satisfy the user need.

1) Cost-sensitive loss function: In the FM model, a typical
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L2 regularization (e.g. �) is applied to the function as well,
the goal of which is to prevent the model from over-fitting
problem. Specifically, ⇥ represents the model parameters
and the function is used to calculate the difference between
the prediction value ŷ and true value y. In this paper, the
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l(ŷ, y) = (ŷ � y)2. We employ an intuitive way to extend the
loss function to cost-sensitive version. That is, enhancing the
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2) Learning methods: There are three different ways to
optimize the model parameters during the learning stage. We
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Fig. 1. Four possible popularity weighting functions.

3) Popularity cost: By using the cost-sensitive FM, we are
able to enhance the effects of unpopular music. We experiment
with the following two weighting functions for adjusting the
weights of each music. Both of them are modified by two
well-known functions.

The first one is the sigmoid cost. We convert the primitive
sigmoid function into a flexible form and re-scale the curve
from 0 to the given maximum popularity (e.g. pmax) of data.
Let p

x

is denoted as the popularity of an instance x:
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, (9)

where cmax is the maximum value of items’ popularity, and you
can observe that p

x

pmax
is the percentage. We use Sigmoid+

cost

to denote the function that is positive favor, and Sigmoid�
cost

to denote the one that is negative favor, respectively.

The second one is the exponential cost. In a similar way,
another weighting function is extended by the exponential
function plus the given popularity p

x

:

Exp
cost

(p
x

) = e±(

p
x

pmax
) logwmax . (10)

We use Exp+
cost

and Exp�
cost

to denote the positive and
negative favor functions, respectively.

For the two proposed popularity weighting functions, we
assume that wmax = 100 and pmax = 10. We plot the corre-
sponding cost of corresponding popularity for each level as the
shown in Figure II-B3. Take Sigmoid+

cost

as the example, the
items that are located on the distribution of high popularity
will donate greater effects upon the loss function, while the
Sigmoid�

cost

takes care of the unpopular items.

There still exists various functions could be utilized as the
weighting function, such as the Gompertz function. In this
paper, we report only the two kinds of weighting functions.
In fact, the proposed cost-sensitive FM is constructed on the
instance-level. Therefore we are able to build any shape of
function according to different user needs.

III. EXPERIMENT

We aim at mitigating the problem of long tail without com-
promising the accuracy of the recommendation. To realize this

goal, we manipulate the loss function of the FM model to make
it cost-sensitive. Different kinds of loss function are examined
in the experiments, including sigmoid and exponential. The
performance of the original loss function (i.e. without cost-
sensitive) is also considered to serve as a baseline method.

A. Data Description

We collect a real-world dataset from KKBOX, which is a
well-known digital music service company in Asia. The dataset
contains 1,800,000 listening records that cover 5,000 users
and 30,000 songs. For experimental settings, we first split the
dataset into training set and testing set following 80/20 rules.
That is, we keep full listening history for 80% users. For the
remain 20% users, we randomly split their listening records
into two parts. Given half of listening records for a user, we
seek to predict which songs the user would like to listen to
(i.e. the missing half).

B. Performance Measure

We apply two metrics to evaluate recommendation perfor-
mance: Popularity and Recall. Popularity is used to measure
how popular a song is. Here we define the popularity as the
amount of listening users who have listened to that song. Recall
is defined as one minus the proportion of missing records
returned by the recommendation system.

It is important to consider the recall measure for a recom-
mendation problem. In the real world scenario, recommending
unpopular songs usually hurts the performance, but we argue
that the goal of recommendations is to help users to find
out the songs they never listen to before but they actually
like. Hence, recall is a good measurement to examine whether
the proposed recommendation algorithm is able to generate a
recommendation list that covers the user likes, and remains
stable performance as well.

C. Evaluation Result on the Recall Measure

Our experiments are conducted on pure user-item ratings.
To validate the effectiveness of the FM model, we first compare
the performance of the standard FM with a number of widely-
used recommendation algorithms via the recall measurement,
and check the performance of proposed cost-sensitive Factor-
izaiton Machine later on.

We briefly illustrate the compared algorithms below. They
are derived from diverse kinds of frameworks including Col-
laborative Filtering (CF), Matrix Factorization and Neural
Network.

Popularity-based Recommendation is a baseline algorithm
that always generates the most popular music as the recom-
mendations.

User-based/item-based CF is one of the most popular
algorithms for a variety of recommendation problems. This
kind of algorithm predicts the rating of specific song based
on the neighbors’ ratings. In general, there are two main cat-
egories of the CF method: User-based CF and Item-based CF.
We implemented these two algorithms by using the extended
version of cosine similarity computation [25].
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Then we describe the experiment setting and results in Section
III. Finally, we conclude the paper in Section IV.

II. METHODOLOGY

To begin with, we introduce the standard FM model in
the first, and then to give a detailed description for the idea of
cost-sensitive FM afterward.

A. Standard FM

Factorization Machine is a generic framework that can
simulate many successful matrix-factorization-based models
via feature engineering. Given a design matrix X 2 Rn⇥p

and its record tuple (x, y), the standard 2-way factorization
machine is defined as:
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. From
technical perspective, k is a hyperparameter that determines
the model complexity and allows the model to learn the latent
factors within the features. In brief, FM provides the promising
framework for the ranking problem. For more details, please
refer to the [9].

B. Cost-Sensitive FM

The cost sensitive learning technique is to give different
costs to each misclassified situation. Therefore the learning
model can be sensitive to the high weighting errors. Similar
ideas of using weighting functions with latent factor models
can be found in the literature [21]–[23]. We apply this mecha-
nism to the loss function of FM and make it feasible to leverage
the recommendation accuracy and target instances. In this
paper, we focus on recommending the relative unpopular music
because such unpopular songs are sometimes more likely to
satisfy the user need.

1) Cost-sensitive loss function: In the FM model, a typical
optimization task usually involves with a loss function l over
the observed data S:
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L2 regularization (e.g. �) is applied to the function as well,
the goal of which is to prevent the model from over-fitting
problem. Specifically, ⇥ represents the model parameters
and the function is used to calculate the difference between
the prediction value ŷ and true value y. In this paper, the
least square loss is proposed as a cost weighting function:
l(ŷ, y) = (ŷ � y)2. We employ an intuitive way to extend the
loss function to cost-sensitive version. That is, enhancing the
loss effects by multiplying an additional cost:
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to denote the corresponding cost of instance x.
Based on the framework, the learning model trends to be fitted
more on the high weighting instances.

2) Learning methods: There are three different ways to
optimize the model parameters during the learning stage. We
describe how to embedded the cost-sensitive loss function in
each learning method below.

The first learning method is stochastic gradient descent
(SGD) [10]. For SGD learning, the model parameters of FM
can be updated by gradient descent methods:
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where ⌘ is the learning rate controlling the learning steps.

The second learning method is alternating least-squares
(ALS) [11]. ALS learning is another kind of approach that
obtains the optimal value by minimizing the total loss per
model parameter. The solution of regularized cost-sensitive
loss function can be found by the first derivative of the
optimization criterion.

@

@✓
OPT (S) =

X

(x,y)2S
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Finally, the third learning method is based on Markov
Chain Monte Carlo (MCMC) [24]. MCMC is an implemen-
tation of Bayesian inference technique that generates the dis-
tribution of parameters. The conditional posterior distributions
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is the prior precision of the parameter. Please
note that the solution would be equivalent to ALS when ✓⇤ =
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Among these learning methods, both the ALS method and
the MCMC method update the model parameters according
to entire errors. Moreover, the MCMC method is an advanced
version of the ALS method by sampling the model parameters.
Therefore, although it is possible to experiment with all of
them, we opt for reporting the result of the MCMC method in
this paper. Another advantage of the MCMC method is that it
can learn recommendation model without giving the external
parameters such as learning rate and the regularization term.
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3) Popularity cost: By using the cost-sensitive FM, we are
able to enhance the effects of unpopular music. We experiment
with the following two weighting functions for adjusting the
weights of each music. Both of them are modified by two
well-known functions.

The first one is the sigmoid cost. We convert the primitive
sigmoid function into a flexible form and re-scale the curve
from 0 to the given maximum popularity (e.g. pmax) of data.
Let p
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For the two proposed popularity weighting functions, we
assume that wmax = 100 and pmax = 10. We plot the corre-
sponding cost of corresponding popularity for each level as the
shown in Figure II-B3. Take Sigmoid+

cost

as the example, the
items that are located on the distribution of high popularity
will donate greater effects upon the loss function, while the
Sigmoid�

cost

takes care of the unpopular items.

There still exists various functions could be utilized as the
weighting function, such as the Gompertz function. In this
paper, we report only the two kinds of weighting functions.
In fact, the proposed cost-sensitive FM is constructed on the
instance-level. Therefore we are able to build any shape of
function according to different user needs.

III. EXPERIMENT

We aim at mitigating the problem of long tail without com-
promising the accuracy of the recommendation. To realize this

goal, we manipulate the loss function of the FM model to make
it cost-sensitive. Different kinds of loss function are examined
in the experiments, including sigmoid and exponential. The
performance of the original loss function (i.e. without cost-
sensitive) is also considered to serve as a baseline method.

A. Data Description

We collect a real-world dataset from KKBOX, which is a
well-known digital music service company in Asia. The dataset
contains 1,800,000 listening records that cover 5,000 users
and 30,000 songs. For experimental settings, we first split the
dataset into training set and testing set following 80/20 rules.
That is, we keep full listening history for 80% users. For the
remain 20% users, we randomly split their listening records
into two parts. Given half of listening records for a user, we
seek to predict which songs the user would like to listen to
(i.e. the missing half).

B. Performance Measure

We apply two metrics to evaluate recommendation perfor-
mance: Popularity and Recall. Popularity is used to measure
how popular a song is. Here we define the popularity as the
amount of listening users who have listened to that song. Recall
is defined as one minus the proportion of missing records
returned by the recommendation system.

It is important to consider the recall measure for a recom-
mendation problem. In the real world scenario, recommending
unpopular songs usually hurts the performance, but we argue
that the goal of recommendations is to help users to find
out the songs they never listen to before but they actually
like. Hence, recall is a good measurement to examine whether
the proposed recommendation algorithm is able to generate a
recommendation list that covers the user likes, and remains
stable performance as well.

C. Evaluation Result on the Recall Measure

Our experiments are conducted on pure user-item ratings.
To validate the effectiveness of the FM model, we first compare
the performance of the standard FM with a number of widely-
used recommendation algorithms via the recall measurement,
and check the performance of proposed cost-sensitive Factor-
izaiton Machine later on.

We briefly illustrate the compared algorithms below. They
are derived from diverse kinds of frameworks including Col-
laborative Filtering (CF), Matrix Factorization and Neural
Network.

Popularity-based Recommendation is a baseline algorithm
that always generates the most popular music as the recom-
mendations.

User-based/item-based CF is one of the most popular
algorithms for a variety of recommendation problems. This
kind of algorithm predicts the rating of specific song based
on the neighbors’ ratings. In general, there are two main cat-
egories of the CF method: User-based CF and Item-based CF.
We implemented these two algorithms by using the extended
version of cosine similarity computation [25].
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L2 regularization (e.g. �) is applied to the function as well,
the goal of which is to prevent the model from over-fitting
problem. Specifically, ⇥ represents the model parameters
and the function is used to calculate the difference between
the prediction value ŷ and true value y. In this paper, the
least square loss is proposed as a cost weighting function:
l(ŷ, y) = (ŷ � y)2. We employ an intuitive way to extend the
loss function to cost-sensitive version. That is, enhancing the
loss effects by multiplying an additional cost:

l
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(ŷ, y) = c
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(ŷ � y)2. (3)

We use c
x

to denote the corresponding cost of instance x.
Based on the framework, the learning model trends to be fitted
more on the high weighting instances.

2) Learning methods: There are three different ways to
optimize the model parameters during the learning stage. We
describe how to embedded the cost-sensitive loss function in
each learning method below.

The first learning method is stochastic gradient descent
(SGD) [10]. For SGD learning, the model parameters of FM
can be updated by gradient descent methods:
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where ⌘ is the learning rate controlling the learning steps.

The second learning method is alternating least-squares
(ALS) [11]. ALS learning is another kind of approach that
obtains the optimal value by minimizing the total loss per
model parameter. The solution of regularized cost-sensitive
loss function can be found by the first derivative of the
optimization criterion.
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Finally, the third learning method is based on Markov
Chain Monte Carlo (MCMC) [24]. MCMC is an implemen-
tation of Bayesian inference technique that generates the dis-
tribution of parameters. The conditional posterior distributions
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|✓) is the error term of ith record, ↵
is the precision of the likelihood, µ

✓

is the prior mean of the
parameter, and �

✓

is the prior precision of the parameter. Please
note that the solution would be equivalent to ALS when ✓⇤ =
eµ
✓

with ↵ = 1 and µ = 0.

Among these learning methods, both the ALS method and
the MCMC method update the model parameters according
to entire errors. Moreover, the MCMC method is an advanced
version of the ALS method by sampling the model parameters.
Therefore, although it is possible to experiment with all of
them, we opt for reporting the result of the MCMC method in
this paper. Another advantage of the MCMC method is that it
can learn recommendation model without giving the external
parameters such as learning rate and the regularization term.
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3) Popularity cost: By using the cost-sensitive FM, we are
able to enhance the effects of unpopular music. We experiment
with the following two weighting functions for adjusting the
weights of each music. Both of them are modified by two
well-known functions.

The first one is the sigmoid cost. We convert the primitive
sigmoid function into a flexible form and re-scale the curve
from 0 to the given maximum popularity (e.g. pmax) of data.
Let p

x

is denoted as the popularity of an instance x:

Sigmoid
cost

(p
x
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cmax

1 + e±(4e

p
x

pmax
�2e)

, (9)

where cmax is the maximum value of items’ popularity, and you
can observe that p

x

pmax
is the percentage. We use Sigmoid+

cost

to denote the function that is positive favor, and Sigmoid�
cost

to denote the one that is negative favor, respectively.

The second one is the exponential cost. In a similar way,
another weighting function is extended by the exponential
function plus the given popularity p

x

:

Exp
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x

) = e±(

p
x

pmax
) logwmax . (10)

We use Exp+
cost

and Exp�
cost

to denote the positive and
negative favor functions, respectively.

For the two proposed popularity weighting functions, we
assume that wmax = 100 and pmax = 10. We plot the corre-
sponding cost of corresponding popularity for each level as the
shown in Figure II-B3. Take Sigmoid+

cost

as the example, the
items that are located on the distribution of high popularity
will donate greater effects upon the loss function, while the
Sigmoid�

cost

takes care of the unpopular items.

There still exists various functions could be utilized as the
weighting function, such as the Gompertz function. In this
paper, we report only the two kinds of weighting functions.
In fact, the proposed cost-sensitive FM is constructed on the
instance-level. Therefore we are able to build any shape of
function according to different user needs.

III. EXPERIMENT

We aim at mitigating the problem of long tail without com-
promising the accuracy of the recommendation. To realize this

goal, we manipulate the loss function of the FM model to make
it cost-sensitive. Different kinds of loss function are examined
in the experiments, including sigmoid and exponential. The
performance of the original loss function (i.e. without cost-
sensitive) is also considered to serve as a baseline method.

A. Data Description

We collect a real-world dataset from KKBOX, which is a
well-known digital music service company in Asia. The dataset
contains 1,800,000 listening records that cover 5,000 users
and 30,000 songs. For experimental settings, we first split the
dataset into training set and testing set following 80/20 rules.
That is, we keep full listening history for 80% users. For the
remain 20% users, we randomly split their listening records
into two parts. Given half of listening records for a user, we
seek to predict which songs the user would like to listen to
(i.e. the missing half).

B. Performance Measure

We apply two metrics to evaluate recommendation perfor-
mance: Popularity and Recall. Popularity is used to measure
how popular a song is. Here we define the popularity as the
amount of listening users who have listened to that song. Recall
is defined as one minus the proportion of missing records
returned by the recommendation system.

It is important to consider the recall measure for a recom-
mendation problem. In the real world scenario, recommending
unpopular songs usually hurts the performance, but we argue
that the goal of recommendations is to help users to find
out the songs they never listen to before but they actually
like. Hence, recall is a good measurement to examine whether
the proposed recommendation algorithm is able to generate a
recommendation list that covers the user likes, and remains
stable performance as well.

C. Evaluation Result on the Recall Measure

Our experiments are conducted on pure user-item ratings.
To validate the effectiveness of the FM model, we first compare
the performance of the standard FM with a number of widely-
used recommendation algorithms via the recall measurement,
and check the performance of proposed cost-sensitive Factor-
izaiton Machine later on.

We briefly illustrate the compared algorithms below. They
are derived from diverse kinds of frameworks including Col-
laborative Filtering (CF), Matrix Factorization and Neural
Network.

Popularity-based Recommendation is a baseline algorithm
that always generates the most popular music as the recom-
mendations.

User-based/item-based CF is one of the most popular
algorithms for a variety of recommendation problems. This
kind of algorithm predicts the rating of specific song based
on the neighbors’ ratings. In general, there are two main cat-
egories of the CF method: User-based CF and Item-based CF.
We implemented these two algorithms by using the extended
version of cosine similarity computation [25].
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Fig. 2. The performance of different recommendation algorithms in terms of a number of performance measures.

Singular Value Decomposition (SVD) is a traditional matrix
factorization technique that factors any m ⇥ n matrix M into
three matrices M⌃V T [26]. We also evaluate the performance
of SVD++, an extended version of SVD-based latent factor
models by integrating implicit feedbacks [27].

Restricted Boltzmann Machines (RBM) is a generative
stochastic neural network that can learn a probability distri-
bution over given data and can be successfully applied to the
recommendation problem [28], [29].

The experimental results are shown in the Figure 2a. The
bad performance of item-based CF is due to the long-tails and
data sparsity problem. Except for item-based CF, most methods
reach comparable result with others. Among the considered
methods, FM obtains the highest performance, which shows
that FM can be a competitive framework for this task.

Regarding to the cost-sensitive FM, we report the per-
formance both on the positive and negative correlation of
popularity weighting functions. As shown in Figure 2b, the
cost-sensitive FM is able to reach almost the same recall rate
as standard FM.

D. Evaluation Result on the Popularity Measure

As shown in Figure 2c, the x-axis represents the rec-
ommendations at the cut-off position N and the y-axis is
the corresponding average popularity. The experimental result
shows that, we can successfully lower the popularity of the
recommended music, especially for the top recommendations.
Certainly, the popularity-based approach contains the highest
average cover users in every cut-off positions. The other
approaches still suffer from the problem of always recom-
mending the popular music. Considering our two proposed
approaches, the positive-favor cost-sensitive FM produces the
relative higher popular music list than the standard FM, while
the negative-favor cost-sensitive FM remarkably reduce the
average cover users from about 3,300 to 1,800 in top recom-
mendations. Note that the cost sensitive method is effective in
terms of both the recall measure and the popularity measure.

IV. CONCLUSIONS

We propose a new recommendation algorithm called cost-
sensitive factorization machine, which is a general framework
that can incorporate any kinds of predefined cost criterion. This

algorithm can help address the phenomenon of long tail for any
recommendation problems by utilizing the proposed popularity
weighting functions. The high weighting of unpopular items
makes the cost-sensitive FM model feasible to pay attention
on the long tailed items, and further reduce the popularity bias
of recommendation without compromising the recall rate. We
experiment with these weighting functions to weight different
instances differently and show by experiment the effectiveness
of the proposed method.
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Fig. 2. The performance of different recommendation algorithms in terms of a number of performance measures.

Singular Value Decomposition (SVD) is a traditional matrix
factorization technique that factors any m ⇥ n matrix M into
three matrices M⌃V T [26]. We also evaluate the performance
of SVD++, an extended version of SVD-based latent factor
models by integrating implicit feedbacks [27].

Restricted Boltzmann Machines (RBM) is a generative
stochastic neural network that can learn a probability distri-
bution over given data and can be successfully applied to the
recommendation problem [28], [29].

The experimental results are shown in the Figure 2a. The
bad performance of item-based CF is due to the long-tails and
data sparsity problem. Except for item-based CF, most methods
reach comparable result with others. Among the considered
methods, FM obtains the highest performance, which shows
that FM can be a competitive framework for this task.

Regarding to the cost-sensitive FM, we report the per-
formance both on the positive and negative correlation of
popularity weighting functions. As shown in Figure 2b, the
cost-sensitive FM is able to reach almost the same recall rate
as standard FM.

D. Evaluation Result on the Popularity Measure

As shown in Figure 2c, the x-axis represents the rec-
ommendations at the cut-off position N and the y-axis is
the corresponding average popularity. The experimental result
shows that, we can successfully lower the popularity of the
recommended music, especially for the top recommendations.
Certainly, the popularity-based approach contains the highest
average cover users in every cut-off positions. The other
approaches still suffer from the problem of always recom-
mending the popular music. Considering our two proposed
approaches, the positive-favor cost-sensitive FM produces the
relative higher popular music list than the standard FM, while
the negative-favor cost-sensitive FM remarkably reduce the
average cover users from about 3,300 to 1,800 in top recom-
mendations. Note that the cost sensitive method is effective in
terms of both the recall measure and the popularity measure.

IV. CONCLUSIONS

We propose a new recommendation algorithm called cost-
sensitive factorization machine, which is a general framework
that can incorporate any kinds of predefined cost criterion. This

algorithm can help address the phenomenon of long tail for any
recommendation problems by utilizing the proposed popularity
weighting functions. The high weighting of unpopular items
makes the cost-sensitive FM model feasible to pay attention
on the long tailed items, and further reduce the popularity bias
of recommendation without compromising the recall rate. We
experiment with these weighting functions to weight different
instances differently and show by experiment the effectiveness
of the proposed method.
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Singular Value Decomposition (SVD) is a traditional matrix
factorization technique that factors any m ⇥ n matrix M into
three matrices M⌃V T [26]. We also evaluate the performance
of SVD++, an extended version of SVD-based latent factor
models by integrating implicit feedbacks [27].

Restricted Boltzmann Machines (RBM) is a generative
stochastic neural network that can learn a probability distri-
bution over given data and can be successfully applied to the
recommendation problem [28], [29].

The experimental results are shown in the Figure 2a. The
bad performance of item-based CF is due to the long-tails and
data sparsity problem. Except for item-based CF, most methods
reach comparable result with others. Among the considered
methods, FM obtains the highest performance, which shows
that FM can be a competitive framework for this task.

Regarding to the cost-sensitive FM, we report the per-
formance both on the positive and negative correlation of
popularity weighting functions. As shown in Figure 2b, the
cost-sensitive FM is able to reach almost the same recall rate
as standard FM.

D. Evaluation Result on the Popularity Measure

As shown in Figure 2c, the x-axis represents the rec-
ommendations at the cut-off position N and the y-axis is
the corresponding average popularity. The experimental result
shows that, we can successfully lower the popularity of the
recommended music, especially for the top recommendations.
Certainly, the popularity-based approach contains the highest
average cover users in every cut-off positions. The other
approaches still suffer from the problem of always recom-
mending the popular music. Considering our two proposed
approaches, the positive-favor cost-sensitive FM produces the
relative higher popular music list than the standard FM, while
the negative-favor cost-sensitive FM remarkably reduce the
average cover users from about 3,300 to 1,800 in top recom-
mendations. Note that the cost sensitive method is effective in
terms of both the recall measure and the popularity measure.

IV. CONCLUSIONS

We propose a new recommendation algorithm called cost-
sensitive factorization machine, which is a general framework
that can incorporate any kinds of predefined cost criterion. This

algorithm can help address the phenomenon of long tail for any
recommendation problems by utilizing the proposed popularity
weighting functions. The high weighting of unpopular items
makes the cost-sensitive FM model feasible to pay attention
on the long tailed items, and further reduce the popularity bias
of recommendation without compromising the recall rate. We
experiment with these weighting functions to weight different
instances differently and show by experiment the effectiveness
of the proposed method.
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Singular Value Decomposition (SVD) is a traditional matrix
factorization technique that factors any m ⇥ n matrix M into
three matrices M⌃V T [26]. We also evaluate the performance
of SVD++, an extended version of SVD-based latent factor
models by integrating implicit feedbacks [27].

Restricted Boltzmann Machines (RBM) is a generative
stochastic neural network that can learn a probability distri-
bution over given data and can be successfully applied to the
recommendation problem [28], [29].

The experimental results are shown in the Figure 2a. The
bad performance of item-based CF is due to the long-tails and
data sparsity problem. Except for item-based CF, most methods
reach comparable result with others. Among the considered
methods, FM obtains the highest performance, which shows
that FM can be a competitive framework for this task.

Regarding to the cost-sensitive FM, we report the per-
formance both on the positive and negative correlation of
popularity weighting functions. As shown in Figure 2b, the
cost-sensitive FM is able to reach almost the same recall rate
as standard FM.

D. Evaluation Result on the Popularity Measure

As shown in Figure 2c, the x-axis represents the rec-
ommendations at the cut-off position N and the y-axis is
the corresponding average popularity. The experimental result
shows that, we can successfully lower the popularity of the
recommended music, especially for the top recommendations.
Certainly, the popularity-based approach contains the highest
average cover users in every cut-off positions. The other
approaches still suffer from the problem of always recom-
mending the popular music. Considering our two proposed
approaches, the positive-favor cost-sensitive FM produces the
relative higher popular music list than the standard FM, while
the negative-favor cost-sensitive FM remarkably reduce the
average cover users from about 3,300 to 1,800 in top recom-
mendations. Note that the cost sensitive method is effective in
terms of both the recall measure and the popularity measure.

IV. CONCLUSIONS

We propose a new recommendation algorithm called cost-
sensitive factorization machine, which is a general framework
that can incorporate any kinds of predefined cost criterion. This

algorithm can help address the phenomenon of long tail for any
recommendation problems by utilizing the proposed popularity
weighting functions. The high weighting of unpopular items
makes the cost-sensitive FM model feasible to pay attention
on the long tailed items, and further reduce the popularity bias
of recommendation without compromising the recall rate. We
experiment with these weighting functions to weight different
instances differently and show by experiment the effectiveness
of the proposed method.
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Singular Value Decomposition (SVD) is a traditional matrix
factorization technique that factors any m ⇥ n matrix M into
three matrices M⌃V T [26]. We also evaluate the performance
of SVD++, an extended version of SVD-based latent factor
models by integrating implicit feedbacks [27].

Restricted Boltzmann Machines (RBM) is a generative
stochastic neural network that can learn a probability distri-
bution over given data and can be successfully applied to the
recommendation problem [28], [29].

The experimental results are shown in the Figure 2a. The
bad performance of item-based CF is due to the long-tails and
data sparsity problem. Except for item-based CF, most methods
reach comparable result with others. Among the considered
methods, FM obtains the highest performance, which shows
that FM can be a competitive framework for this task.

Regarding to the cost-sensitive FM, we report the per-
formance both on the positive and negative correlation of
popularity weighting functions. As shown in Figure 2b, the
cost-sensitive FM is able to reach almost the same recall rate
as standard FM.

D. Evaluation Result on the Popularity Measure

As shown in Figure 2c, the x-axis represents the rec-
ommendations at the cut-off position N and the y-axis is
the corresponding average popularity. The experimental result
shows that, we can successfully lower the popularity of the
recommended music, especially for the top recommendations.
Certainly, the popularity-based approach contains the highest
average cover users in every cut-off positions. The other
approaches still suffer from the problem of always recom-
mending the popular music. Considering our two proposed
approaches, the positive-favor cost-sensitive FM produces the
relative higher popular music list than the standard FM, while
the negative-favor cost-sensitive FM remarkably reduce the
average cover users from about 3,300 to 1,800 in top recom-
mendations. Note that the cost sensitive method is effective in
terms of both the recall measure and the popularity measure.

IV. CONCLUSIONS

We propose a new recommendation algorithm called cost-
sensitive factorization machine, which is a general framework
that can incorporate any kinds of predefined cost criterion. This

algorithm can help address the phenomenon of long tail for any
recommendation problems by utilizing the proposed popularity
weighting functions. The high weighting of unpopular items
makes the cost-sensitive FM model feasible to pay attention
on the long tailed items, and further reduce the popularity bias
of recommendation without compromising the recall rate. We
experiment with these weighting functions to weight different
instances differently and show by experiment the effectiveness
of the proposed method.
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Singular Value Decomposition (SVD) is a traditional matrix
factorization technique that factors any m ⇥ n matrix M into
three matrices M⌃V T [26]. We also evaluate the performance
of SVD++, an extended version of SVD-based latent factor
models by integrating implicit feedbacks [27].

Restricted Boltzmann Machines (RBM) is a generative
stochastic neural network that can learn a probability distri-
bution over given data and can be successfully applied to the
recommendation problem [28], [29].

The experimental results are shown in the Figure 2a. The
bad performance of item-based CF is due to the long-tails and
data sparsity problem. Except for item-based CF, most methods
reach comparable result with others. Among the considered
methods, FM obtains the highest performance, which shows
that FM can be a competitive framework for this task.

Regarding to the cost-sensitive FM, we report the per-
formance both on the positive and negative correlation of
popularity weighting functions. As shown in Figure 2b, the
cost-sensitive FM is able to reach almost the same recall rate
as standard FM.

D. Evaluation Result on the Popularity Measure

As shown in Figure 2c, the x-axis represents the rec-
ommendations at the cut-off position N and the y-axis is
the corresponding average popularity. The experimental result
shows that, we can successfully lower the popularity of the
recommended music, especially for the top recommendations.
Certainly, the popularity-based approach contains the highest
average cover users in every cut-off positions. The other
approaches still suffer from the problem of always recom-
mending the popular music. Considering our two proposed
approaches, the positive-favor cost-sensitive FM produces the
relative higher popular music list than the standard FM, while
the negative-favor cost-sensitive FM remarkably reduce the
average cover users from about 3,300 to 1,800 in top recom-
mendations. Note that the cost sensitive method is effective in
terms of both the recall measure and the popularity measure.

IV. CONCLUSIONS

We propose a new recommendation algorithm called cost-
sensitive factorization machine, which is a general framework
that can incorporate any kinds of predefined cost criterion. This

algorithm can help address the phenomenon of long tail for any
recommendation problems by utilizing the proposed popularity
weighting functions. The high weighting of unpopular items
makes the cost-sensitive FM model feasible to pay attention
on the long tailed items, and further reduce the popularity bias
of recommendation without compromising the recall rate. We
experiment with these weighting functions to weight different
instances differently and show by experiment the effectiveness
of the proposed method.
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Conclusion

• This is a preliminary research about cost-sensitive learning for 
recommendation problem and FM model.

• The experimental result shows that the proposed instance-level  
cost-sensitive FM could achieve the different goals with different  
weighting functions.



– ChihMing 
chagnecandy at gmail.com

Any Question?


