Music Recommendation Based on Multiple Contextual Similarity Information

Chih-Ming Chen, Ming-Feng Tsai

Department of Computer Science & Program in Digital Content and Technology National Chengchi University

Jen-Yu Liu, Yi-Hsuan Yang

Research Center for Information Technology Innovation Academia Sinica

Taipei, Taiwan

Our Studies

Multiple similarity information

(Mimic the CF/CB method)

Music-related Dataset

Initial dataset

- 1,928,868 Listening records
- 674,932 Users
- 72,913 Songs

Experimental dataset

- 225,652 Listening records
- 19,596 Users
- 30,260 Songs

* keep only the users who have more than 10 listening records

LiveJournal Example Post

Recommendation Strategy

Match the Emotions

EchoNest
API

Article

TF-IDF weights

Description Valence
dream 6.73
lonely 2.71
admired 7.74

Feature	Dimension
Danceability	1
Loudness	1
Key	1
Mode	1
Tempo	1
std_of_pitches	12
mean_of_pitches	12
std_of_timbre	12
mean_of_timbre	12
	Danceability Loudness Key Mode Tempo std_of_pitches mean_of_pitches std_of_timbre

(53-dimensional vector)

M. Bradley and P. J. Lang, "Affective norms for english words ANEW: Instruction manual and affective ratings."

(Affective norm for English words)

(Emotional status)

				reis	pective
	hate	2.12	6.95	5.05	
	good	7.47	5.43	6.41	otion
Pŧ	admired	7.74	6.11	7.53	
	lonely	2.71	4.51	2.95	
	dream	6.73	4.53	5.53	
	Description	valence	Arousal	Dominance	

Valance: pleasant to unpleasant

Ranking

• Arousal: calm to excited

Model

Dominance: control

(3-dimensional vector)

Model the relationship

Our Ranking Approach

$$\hat{y}(x) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{j=1}^n \sum_{j'=j+1}^n x_j x_{j'} \sum_{f=1}^\kappa v_{jf} v_{j'f}$$
 Global Bias Feature Weights Weights of pair of features

[Rendle, ICDM 2010]

- Factorization Machine (FM)
 - A competitive model for ranking problem.
 - Easy to embed various kinds of feature in the data.
 - Capable of learning the interactions from pair of features.

The Data Format

$$\hat{y}(x) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{j=1}^n \sum_{j'=j+1}^n x_j x_{j'} \sum_{f=1}^\kappa v_{jf} v_{j'f}$$
 Global Bias Feature Weights Weights of pair of features

Features Interaction

Similarity Information

Enable the missing connections between the features

Example

User & Music Similarity

• U: User

• US: User similarity

• S: Song

• SS: Song similarity

(Mean Average Precision)

Features	MAP@10	Recall
U + S (baseline)	0.3817	0.5216
U + S + US	0.4310	0.5712
U + S + SS	0.4635	0.6194
U + S + US + SS	0.4712	0.6251

Feature Similarity

• It is also applicable to other kinds of feature (under FM)

Results for Feature Similarity

- U: User
- S: Song
- A: Artist
- M: Mood tag
- Au: Audio information
- VAD: Emotional status
- R: Region

Features	MAP@10	Recall
U + S	0.3817	0.5216
U + S + A	0.5025	0.6538
U + S + A + AS	0.5125	0.6640
U + S + M	0.4635	0.6194
U + S + M + MS	0.4712	0.6251
U + S + Au	0.4254	0.5809
U + S + Au + AuS	0.4576	0.6114
U + S + VAD	0.4438	0.5905
U + S + VAD + VADS	0.4511	0.5935
U + S + R	0.4283	0.5723
U + S + R +RS	0.4382	0.5834

Some Issues

Confused interactions

- High computation cost
- High complexity

Example for Group-of-Feature

16

Reduce complexity

Grouping Method

$$\hat{y}(x) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{j=1}^n \sum_{j'=j+1}^n x_j x_{j'} \sum_{f=1}^\kappa v_{jf} v_{j'f}$$

Interaction between each pair of features

$$\hat{y}(x) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{j \in G(j)}^n \sum_{j' \notin G(j)}^n x_j x_{j'} \sum_{f=1}^\kappa v_{jf} v_{j'f}$$

This way can eliminate the inner interaction (If the two features are in the same group)

Mean Average Precision

Mean Average Precision

Training Loss

Root Mean Square Error

Conclusion

- Music Recommendation
 - Match the music by capturing the emotions
- Recommendation Model
 - Factorization Machine is used for ranking purpose
 - Integrate the multiple similarity information
 - Apply the group-of-feature concept to FM model

Thank You!

Chih-Ming Chen changecandy@gmail.com