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�
<latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit>

LNS
<latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit><latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit><latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit><latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit>

LNS
<latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit><latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit><latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit><latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit>

LDS
<latexit sha1_base64="tzV//7+Hwzs9Gr8gq68dtbNxIck=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LKgCxcuKtoHtCFMppN26GQSZiaFEvInblwo4tY/ceffOGmz0NYDA4dz7uWeOUHCmdKO821V1tY3Nreq27Wd3b39A/vwqKPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHJT+N0plYrF4knPEupFeCRYyAjWRvJtexBhPSaYZ/e5n90+5r5ddxrOHGiVuCWpQ4mWb38NhjFJIyo04Vipvusk2suw1IxwmtcGqaIJJhM8on1DBY6o8rJ58hydGWWIwliaJzSaq783MhwpNYsCM1nkVMteIf7n9VMdXnsZE0mqqSCLQ2HKkY5RUQMaMkmJ5jNDMJHMZEVkjCUm2pRVMyW4y19eJZ2Lhus03IfLerNV1lGFEziFc3DhCppwBy1oA4EpPMMrvFmZ9WK9Wx+L0YpV7hzDH1ifP70Zk8E=</latexit><latexit sha1_base64="tzV//7+Hwzs9Gr8gq68dtbNxIck=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LKgCxcuKtoHtCFMppN26GQSZiaFEvInblwo4tY/ceffOGmz0NYDA4dz7uWeOUHCmdKO821V1tY3Nreq27Wd3b39A/vwqKPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHJT+N0plYrF4knPEupFeCRYyAjWRvJtexBhPSaYZ/e5n90+5r5ddxrOHGiVuCWpQ4mWb38NhjFJIyo04Vipvusk2suw1IxwmtcGqaIJJhM8on1DBY6o8rJ58hydGWWIwliaJzSaq783MhwpNYsCM1nkVMteIf7n9VMdXnsZE0mqqSCLQ2HKkY5RUQMaMkmJ5jNDMJHMZEVkjCUm2pRVMyW4y19eJZ2Lhus03IfLerNV1lGFEziFc3DhCppwBy1oA4EpPMMrvFmZ9WK9Wx+L0YpV7hzDH1ifP70Zk8E=</latexit><latexit sha1_base64="tzV//7+Hwzs9Gr8gq68dtbNxIck=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LKgCxcuKtoHtCFMppN26GQSZiaFEvInblwo4tY/ceffOGmz0NYDA4dz7uWeOUHCmdKO821V1tY3Nreq27Wd3b39A/vwqKPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHJT+N0plYrF4knPEupFeCRYyAjWRvJtexBhPSaYZ/e5n90+5r5ddxrOHGiVuCWpQ4mWb38NhjFJIyo04Vipvusk2suw1IxwmtcGqaIJJhM8on1DBY6o8rJ58hydGWWIwliaJzSaq783MhwpNYsCM1nkVMteIf7n9VMdXnsZE0mqqSCLQ2HKkY5RUQMaMkmJ5jNDMJHMZEVkjCUm2pRVMyW4y19eJZ2Lhus03IfLerNV1lGFEziFc3DhCppwBy1oA4EpPMMrvFmZ9WK9Wx+L0YpV7hzDH1ifP70Zk8E=</latexit><latexit sha1_base64="tzV//7+Hwzs9Gr8gq68dtbNxIck=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LKgCxcuKtoHtCFMppN26GQSZiaFEvInblwo4tY/ceffOGmz0NYDA4dz7uWeOUHCmdKO821V1tY3Nreq27Wd3b39A/vwqKPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHJT+N0plYrF4knPEupFeCRYyAjWRvJtexBhPSaYZ/e5n90+5r5ddxrOHGiVuCWpQ4mWb38NhjFJIyo04Vipvusk2suw1IxwmtcGqaIJJhM8on1DBY6o8rJ58hydGWWIwliaJzSaq783MhwpNYsCM1nkVMteIf7n9VMdXnsZE0mqqSCLQ2HKkY5RUQMaMkmJ5jNDMJHMZEVkjCUm2pRVMyW4y19eJZ2Lhus03IfLerNV1lGFEziFc3DhCppwBy1oA4EpPMMrvFmZ9WK9Wx+L0YpV7hzDH1ifP70Zk8E=</latexit>

�UC
<latexit sha1_base64="B61lcgc8IFnr6wJ/Pa/b6q6iTsU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOhFy9CBNNW2lg22027dHcTdjdCCf0VXjwo4tWf481/47bNQVsfDDzem2FmXpRypo3rfjultfWNza3ydmVnd2//oHp41NJJpggNSMIT1YmwppxJGhhmOO2kimIRcdqOxs2Z336iSrNE3ptJSkOBh5LFjGBjpYeeP2KPedCc9qs1t+7OgVaJV5AaFPD71a/eICGZoNIQjrXuem5qwhwrwwin00ov0zTFZIyHtGupxILqMJ8fPEVnVhmgOFG2pEFz9fdEjoXWExHZToHNSC97M/E/r5uZ+DrMmUwzQyVZLIozjkyCZt+jAVOUGD6xBBPF7K2IjLDCxNiMKjYEb/nlVdK6qHtu3bu7rDVuizjKcAKncA4eXEEDbsCHAAgIeIZXeHOU8+K8Ox+L1pJTzBzDHzifP5bpkEo=</latexit><latexit sha1_base64="B61lcgc8IFnr6wJ/Pa/b6q6iTsU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOhFy9CBNNW2lg22027dHcTdjdCCf0VXjwo4tWf481/47bNQVsfDDzem2FmXpRypo3rfjultfWNza3ydmVnd2//oHp41NJJpggNSMIT1YmwppxJGhhmOO2kimIRcdqOxs2Z336iSrNE3ptJSkOBh5LFjGBjpYeeP2KPedCc9qs1t+7OgVaJV5AaFPD71a/eICGZoNIQjrXuem5qwhwrwwin00ov0zTFZIyHtGupxILqMJ8fPEVnVhmgOFG2pEFz9fdEjoXWExHZToHNSC97M/E/r5uZ+DrMmUwzQyVZLIozjkyCZt+jAVOUGD6xBBPF7K2IjLDCxNiMKjYEb/nlVdK6qHtu3bu7rDVuizjKcAKncA4eXEEDbsCHAAgIeIZXeHOU8+K8Ox+L1pJTzBzDHzifP5bpkEo=</latexit><latexit sha1_base64="B61lcgc8IFnr6wJ/Pa/b6q6iTsU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOhFy9CBNNW2lg22027dHcTdjdCCf0VXjwo4tWf481/47bNQVsfDDzem2FmXpRypo3rfjultfWNza3ydmVnd2//oHp41NJJpggNSMIT1YmwppxJGhhmOO2kimIRcdqOxs2Z336iSrNE3ptJSkOBh5LFjGBjpYeeP2KPedCc9qs1t+7OgVaJV5AaFPD71a/eICGZoNIQjrXuem5qwhwrwwin00ov0zTFZIyHtGupxILqMJ8fPEVnVhmgOFG2pEFz9fdEjoXWExHZToHNSC97M/E/r5uZ+DrMmUwzQyVZLIozjkyCZt+jAVOUGD6xBBPF7K2IjLDCxNiMKjYEb/nlVdK6qHtu3bu7rDVuizjKcAKncA4eXEEDbsCHAAgIeIZXeHOU8+K8Ox+L1pJTzBzDHzifP5bpkEo=</latexit><latexit sha1_base64="B61lcgc8IFnr6wJ/Pa/b6q6iTsU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOhFy9CBNNW2lg22027dHcTdjdCCf0VXjwo4tWf481/47bNQVsfDDzem2FmXpRypo3rfjultfWNza3ydmVnd2//oHp41NJJpggNSMIT1YmwppxJGhhmOO2kimIRcdqOxs2Z336iSrNE3ptJSkOBh5LFjGBjpYeeP2KPedCc9qs1t+7OgVaJV5AaFPD71a/eICGZoNIQjrXuem5qwhwrwwin00ov0zTFZIyHtGupxILqMJ8fPEVnVhmgOFG2pEFz9fdEjoXWExHZToHNSC97M/E/r5uZ+DrMmUwzQyVZLIozjkyCZt+jAVOUGD6xBBPF7K2IjLDCxNiMKjYEb/nlVdK6qHtu3bu7rDVuizjKcAKncA4eXEEDbsCHAAgIeIZXeHOU8+K8Ox+L1pJTzBzDHzifP5bpkEo=</latexit> �IC
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Collaborative	similarity	embedding	(CSE)	is	a	unified	framework	that	
exploits	comprehensive	collaborative	relations	available	in	a	user-
item	bipartite	graph	for	representation	learning	and	recommendation.	
It	differentiate	two	types	of	proximity	relations:	direct	proximity	
and	k-th	order	neighborhood	proximity.	While	learning	from	the	former	
exploits	direct	user-item	associations	observable	from	the	graph,	
learning	from	the	latter	makes	use	of	implicit	associations	such	as	
user-user	similarities	and	item-item	similarities,	which	can	provide	
valuable	information	especially	when	the	graph	is	sparse.		

(i.e., � = {�,�UC ,�UC }) can ideally model user-user, item-item
clustering and user-item relations in a joint-learning model.

2.3 Sampling-based Expectation Loss
In order to minimize the above objective functions, we need to go
through all the pairs in E for Eq. (1), E and Ē for Eq. (2), and SU
and SI for Eq. (3), to compute all the pairwise losses. This is not
feasible in real-world recommendation scenarios as the complexity
is O ( |V | ⇥ |V |). To address this, we propose a sampling technique
to work in tandem with the above two modules to enhance CSE’s
scalability and �exibility in learning user and item representations
from large-scale datasets.

In CSE, the DSEmbed and NSEmbed modules are fused with the
shareable data sampling technique described below. For each param-
eter update, we �rst sample an observed user-item pair (�i ,�j ) 2 E,
as shown as U1 and I1 in Fig. 1(b), where �i 2 U and �j 2 I .
Then, we search for the k-order neighborhood structures of user
�i and item �j via the k-step random walks. To improve computa-
tional e�ciency, we use negative sampling [22]. Consequently, for
a rating-based approach (see Eq. (1)), the expected sampled loss of
the DSEmbed module can be re-written as

LDS = E(�i ,�j )⇠E
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where M denotes the number of negative pairs adopted. For a
ranking-based approach (see Eq. (2)), the DSEmbed module can be
re-written as
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Note that for the ranking-based approach, there is no need to ex-
plicitly include M negative sample pairs as this kind of method
naturally involves negative pairs from Ē. Similarly, given a user or
an item vertex �i , its k-order neighborhood structure N�i is com-
posed of nodes in the k-step random walks sur�ng on G,W�i =

(W0
�i ,W1
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Since LDS and LNS are described in a sampling-based expecta-
tion form, CSE provides the �exibility for accommodating arbitrary
distributions of positive and negative data. In the following experi-
ments, we produce the positive data according to primitive edges
distribution of given user-item graph. As to negative sampling,
we propose to directly sample the negative data from whole data
collection instead of unobserved data collection.

Dataset #Users #Items #Edges Edge type

Frappe 957 4,028 96,202 click count
CiteULike 5,551 16,980 210,504 like/dislike
Net�ix 65,533 17,759 25,120,129 5-star
MovieLens-Latest 259,137 40,110 24,404,096 5-star
Last.fm-360K 359,347 294,015 17,559,530 play count
Amazon-Book 603,668 367,982 8,898,041 5-star
Epinions-Extend 755,760 120,492 13,668,319 5-star
Echonest 1,019,318 384,546 48,373,586 play count

Table 1: Statistics of the datasets considered in our experiments.

2.4 Optimization
In the optimization stage, we use asynchronous stochastic gradient
descent (ASGD) [18] to e�ciently update the parameters in paral-
lel. The model parameters are composed of the three embedding
matrices � = {�,�UC ,�IC }, each having the size O ( |V |d ). They
are updated with learning rate � according to
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where �V is a hyper-parameter for reducing the risk of over�tting.

3 EXPERIMENT
3.1 Settings
3.1.1 Datasets and Preprocessing. To examine the capability and
scalability of the CSE framework, we conducted experiments on
eight publicly available real-world datasets that vary in terms of
domain, size, and density, as shown in Table 1. For each of the
datasets, we discarded the users who have less than ten associated
interactions with items. In addition, we converted each data into
implicit feedback:2 1) for 5-star rating datasets, we transformed
ratings higher than or equal to 3.5 to 1 and the rest to 0; 2) for count-
based datasets, we transformed counts higher than or equal to 3 to
1 and the rest to 0; 3) for the CiteULike dataset, no transformation
was conducted as it is already a binary preference dataset.

3.1.2 Baseline Algorithms. We compare the performance of our
model with the following eight baseline methods: 1) POP, a naive
popularity model that ranks the items by their degrees, 2) Deep-
Walk [16], a classic algorithm of network embedding, 3)WALS [9], a
weighted rating-based factorization model, 4) ranking-based factor-
ization models: BPR [19], WARP [25], and K-OS [26], 5) BiNE [5],
a network embedding model specialized for bipartite networks,
and 6) recent advanced models considering user-user/item-item
relations: coFactor [13], CML [8] and WalkRanker [27]. Note that
except for POP, the embedding vectors for users and items learned
by these competitors as well as by our method can be directly
used for item recommendations. Additionally, while CML adopts
Euclidean distance as the scoring function, all other methods in-
cluding ours utilize the dot product to calculate the score of a pair
of user-item embedding vectors. The experiments for WALS and
2Note that in real-world scenarios, most feedback is not explicit but implicit [19]; we
here converted the datasets into implicit feedback as most of the recent developed
methods focus on dealing with such type of data. However, our method is not limited
to binary preference since the presented sampling technique has the �exibility to
manage arbitrary weighted edge distributions and rating estimation is also allowed in
the proposed RATE-CSE.
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Frappe CiteULike Net�ix MovieLens-Latest

Recall@10 mAP@10 Recall@10 mAP@10 Recall@10 mAP@10 Recall@10 mAP@10

Pop 0.1750 0.0708 0.0270 0.0114 0.0861 0.0359 0.0882 0.0289
DeepWalk [16] 0.0430 0.0256 0.0875 0.0458 0.0235 0.0112 0.0207 0.0061
WALS [9] 0.1632 0.1117 0.1851 0.0915 0.1214 0.0471 0.2350 †0.1682
BPR [19] 0.2785 0.1550 0.0861 0.0426 0.1496 0.0757 0.2163 0.1130
WARP [25] 0.3012 0.1796 0.1468 0.0813 †0.1887 †0.1004 †0.2712 0.1651
K -OS [26] 0.3018 0.1914 0.1356 0.0756 0.1783 0.0868 0.2522 0.1641
BiNE [5] 0.2159 0.1201 0.0422 0.0201 - - - -
coFactor [13] 0.2110 0.1309 0.1323 0.0721 - - - -
CML [8] †0.3311 0.1958 0.1740 0.1008 0.1035 0.0444 0.1109 0.0957
WalkRanker [27] 0.3286 †0.2099 †0.2059 †0.1192 0.1090 0.0483 0.1307 0.0351

RATE-CSE 0.3347 0.2047 *0.2362 *0.1452 *0.2014 *0.1039 *0.3225 *0.1990
Improv. (%) +1.0% �2.4% +14.7% +21.9% +6.7% +3.5% +18.9% +18.3%

RANK-CSE 0.3155 0.2005 0.1993 *0.1228 *0.2156 *0.1202 *0.3094 *0.1902
Improv. (%) �4.7% �4.4% �3.2% +3.0% +14.2% +19.7% +14.1% +13.1%

Last.fm-360K Amazon-Book Epinions-Extend Echonest

Recall@10 mAP@10 Recall@10 mAP@10 Recall@10 mAP@10 Recall@10 mAP@10

Pop 0.0309 0.0133 0.0053 0.0015 0.0450 0.0246 0.0257 0.0104
WALS [9] 0.1621 0.0857 †0.0540 †0.0227 0.1479 0.0634 0.1287 †0.0638
BPR [19] 0.1120 0.0545 0.0248 0.0119 0.1126 0.0579 0.0499 0.0210
WARP [25] 0.1556 0.0832 0.0457 0.0199 †0.1509 †0.0775 0.1001 0.0447
K -OS [26] †0.1641 †0.0888 0.0511 0.0215 0.1493 0.0766 †0.1249 0.0597
CML [8] 0.0496 0.0199 0.0129 0.0052 0.1171 0.0629 0.0357 0.0195
WalkRanker [27] 0.0233 0.0088 0.0080 0.0036 0.0560 0.0289 0.0309 0.0133

RATE-CSE *0.1687 *0.0909 0.0540 0.0240 *0.1659 0.0788 0.1260 0.0605
Improv. (%) +2.8% +2.3% +0.0% +5.7% +9.9% +1.7% +0.8% �0.5%
RANK-CSE *0.1762 *0.0970 *0.0625 *0.0274 *0.1767 *0.0921 *0.1358 *0.0679
Improv. (%) +8.2% +14.4% +15.7% +20.7% +17.0% +20.2% +8.7% +6.4%

Table 2: Recommendation performance. The † symbol indicates the best performingmethod among all the baselinemethods; ‘*’ and ‘%Improv.’
denote statistical signi�cance at p < 0.01 with a paired t -test and the percentage improvement of the proposed method, respectively, with
respect to the best performing baseline.

BPR were conducted using the matrix factorization library QMF,3
and those for WARP and K-OS were conducted using LightFM;4
for coFactor, CML, and WalkRanker, we used the code provided by
the respective authors.

3.1.3 Experimental Setup. For all the experiments, the dimension
of embedding vectors was �xed to 100; the values of the hyper-
parameters for the compared method were decided via implement-
ing a grid search over di�erent settings, and the combination that
leads to the best performance was picked.

For our model, the learning rate � was set to 0.1, �V was set to
0.025; the hyper-parameter � was set to 0.05 and 0.1 for rating-based
CSE and ranking-based CSE, respectively, and k was set to 2 as the
default value. The sensitivity of CSE parameters are additionally
reported. For each dataset, the sample time for convergence depends
on the number of non-zero user-item interaction edges and is set to
80 ⇥ |E |. Sensitivity analysis for k and � and convergence analysis
are later provided in the section for convergence analyses.

3https://github.com/quora/qmf
4https://github.com/lyst/lightfm

3.2 Results
3.2.1 Recommendation Performance Comparison. The results for
the ten baseline methods along with the proposed method are listed
in Table 2, where RATE-CSE and RANK-CSE denote two versions
of our method that employ respectively rating-based and ranking-
based loss functions for user-item associations. Note that the best
results are always indicated by the bold font, and for coFactor and
BiNE we report only part of the experimental results on Frappe
and CiteULike because of resource limitations.5 DeepWalk is not
suitable for user-item recommendation as it make the users apart
from items in the embedding space. In addition, observe that BiNE
does not perform well in our experiments; such a result is due to
the fact that BiNE is a general network embedding model and thus
does not incorporate the regularizer in their objective function,
which is however an important factor for the robustness of recom-
mendation performance. Comparing the performance of the other
baselinemethods, we observe that the performance ofWALS,WARP

5While the memory usage of coFactor implementation is O ( |V |2 ), BiNE’s requires
extensive computational time, e.g., more than 24 hours to learn the embedding for the
large dataset, Movielens-Latest.

RATE-CSE	and	RANK-CSE	denote	two	
versions	of	our	method	that	employ	
respectively	rating-based	and	ranking-	
based	loss	functions	for	user-item	
associations.	It	can	be	observed	that	
our	method	achieves	the	best	results	
in	terms	of	both	Recall@10	and	mAP@10	
for	most	datasets.	Moreover,	RANK-CSE	
generally	outperforms	RATE-CSE	in	the	
experiments,	reconfirming	that	using	a	
ranking-based	loss	is	indeed	better	
for	datasets	with	binary	implicit	
feedbacks.	Except	for	Frappe,	RATE-CSE	
or	RANK-CSE	achieves	significantly	
much	better	performance	than	the	best	
performing	baseline	methods.		

(i.e., � = {�,�UC ,�UC }) can ideally model user-user, item-item
clustering and user-item relations in a joint-learning model.

2.3 Sampling-based Expectation Loss
In order to minimize the above objective functions, we need to go
through all the pairs in E for Eq. (1), E and Ē for Eq. (2), and SU
and SI for Eq. (3), to compute all the pairwise losses. This is not
feasible in real-world recommendation scenarios as the complexity
is O ( |V | ⇥ |V |). To address this, we propose a sampling technique
to work in tandem with the above two modules to enhance CSE’s
scalability and �exibility in learning user and item representations
from large-scale datasets.

In CSE, the DSEmbed and NSEmbed modules are fused with the
shareable data sampling technique described below. For each param-
eter update, we �rst sample an observed user-item pair (�i ,�j ) 2 E,
as shown as U1 and I1 in Fig. 1(b), where �i 2 U and �j 2 I .
Then, we search for the k-order neighborhood structures of user
�i and item �j via the k-step random walks. To improve computa-
tional e�ciency, we use negative sampling [22]. Consequently, for
a rating-based approach (see Eq. (1)), the expected sampled loss of
the DSEmbed module can be re-written as

LDS = E(�i ,�j )⇠E
f
� logp (�i ,�j |�)

g
+

X

M
E(�k ,�h )⇠Ē

⇥
logp (�k ,�h |�)

⇤
, (5)

where M denotes the number of negative pairs adopted. For a
ranking-based approach (see Eq. (2)), the DSEmbed module can be
re-written as

LDS = E(�i ,�k )⇠Ē
f
E(�i ,�j )⇠E

f
� logp (�j >i �k |�)

g
|�i

g
. (6)

Note that for the ranking-based approach, there is no need to ex-
plicitly include M negative sample pairs as this kind of method
naturally involves negative pairs from Ē. Similarly, given a user or
an item vertex �i , its k-order neighborhood structure N�i is com-
posed of nodes in the k-step random walks sur�ng on G,W�i =

(W0
�i ,W1

�i ,W2
�i , . . . ,Wk

�i ), where the vertex forW j
�i is randomly

chosen from the neighbors of the vertex � givenW j�1
�i = � and

W0
�i = �i . The expected sampled loss of the NSEmbed module can

be re-written as

LNS = E(�i ,�j )⇠SU
f
� logp (�j |�i ;�;�UC )

g
+

X

M
E(�i ,�j )⇠Ē

f
logp (�j |�i ;�;�UC )

g
+

E(�i ,�j )⇠SI
f
� logp (�j |�i ;�;�IC )

g
+

X

M
E(�i ,�j )⇠Ē

f
logp (�j |�i ;�;�IC )

g
. (7)

Since LDS and LNS are described in a sampling-based expecta-
tion form, CSE provides the �exibility for accommodating arbitrary
distributions of positive and negative data. In the following experi-
ments, we produce the positive data according to primitive edges
distribution of given user-item graph. As to negative sampling,
we propose to directly sample the negative data from whole data
collection instead of unobserved data collection.

Dataset #Users #Items #Edges Edge type

Frappe 957 4,028 96,202 click count
CiteULike 5,551 16,980 210,504 like/dislike
Net�ix 65,533 17,759 25,120,129 5-star
MovieLens-Latest 259,137 40,110 24,404,096 5-star
Last.fm-360K 359,347 294,015 17,559,530 play count
Amazon-Book 603,668 367,982 8,898,041 5-star
Epinions-Extend 755,760 120,492 13,668,319 5-star
Echonest 1,019,318 384,546 48,373,586 play count

Table 1: Statistics of the datasets considered in our experiments.

2.4 Optimization
In the optimization stage, we use asynchronous stochastic gradient
descent (ASGD) [18] to e�ciently update the parameters in paral-
lel. The model parameters are composed of the three embedding
matrices � = {�,�UC ,�IC }, each having the size O ( |V |d ). They
are updated with learning rate � according to

� � � �
 
@LDS
@�

+ �

 
@LNS
@�

!
� �V k�k

!
, (8)

where �V is a hyper-parameter for reducing the risk of over�tting.

3 EXPERIMENT
3.1 Settings
3.1.1 Datasets and Preprocessing. To examine the capability and
scalability of the CSE framework, we conducted experiments on
eight publicly available real-world datasets that vary in terms of
domain, size, and density, as shown in Table 1. For each of the
datasets, we discarded the users who have less than ten associated
interactions with items. In addition, we converted each data into
implicit feedback:2 1) for 5-star rating datasets, we transformed
ratings higher than or equal to 3.5 to 1 and the rest to 0; 2) for count-
based datasets, we transformed counts higher than or equal to 3 to
1 and the rest to 0; 3) for the CiteULike dataset, no transformation
was conducted as it is already a binary preference dataset.

3.1.2 Baseline Algorithms. We compare the performance of our
model with the following eight baseline methods: 1) POP, a naive
popularity model that ranks the items by their degrees, 2) Deep-
Walk [16], a classic algorithm of network embedding, 3)WALS [9], a
weighted rating-based factorization model, 4) ranking-based factor-
ization models: BPR [19], WARP [25], and K-OS [26], 5) BiNE [5],
a network embedding model specialized for bipartite networks,
and 6) recent advanced models considering user-user/item-item
relations: coFactor [13], CML [8] and WalkRanker [27]. Note that
except for POP, the embedding vectors for users and items learned
by these competitors as well as by our method can be directly
used for item recommendations. Additionally, while CML adopts
Euclidean distance as the scoring function, all other methods in-
cluding ours utilize the dot product to calculate the score of a pair
of user-item embedding vectors. The experiments for WALS and
2Note that in real-world scenarios, most feedback is not explicit but implicit [19]; we
here converted the datasets into implicit feedback as most of the recent developed
methods focus on dealing with such type of data. However, our method is not limited
to binary preference since the presented sampling technique has the �exibility to
manage arbitrary weighted edge distributions and rating estimation is also allowed in
the proposed RATE-CSE.

RANK-based 
Loss:

RATE-based 
Loss:

Optimization 
mechanism:

KL-divergence:

0 150 300 450 600 750 900 1050 1200

sample times (million)

0.08

0.10

0.12

0.14

0.16

0.18

m
A
P
@
10

Movielens-Latest

RATE-CSE

RANK-CSE

0 1 2 3 4

k

0.15

0.16

0.17

0.18

0.19

0.20

m
A
P
@

10

Movielens-Latest

RATE-CSE

RANK-CSE

The	first	figure	shows	that	increasing	the	order	k	of	modeling	
neighborhood	proximity	between	users	or	items	improves	the	
performance	in	general.	The	second	Figure	shows	how	the	
balancing	parameter	λ	affects	performance.	The	last	one	shows	
that	the	required	total	sample	times	for	convergence	is	linear	
with	respect	to	|E|.	
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