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Lecture (Sean & CM, 65 minutes)  

Hands-on (CM, 15 minutes) 

Q&A (Sean & CM, 10 minutes)
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QR to Slides, Codes, Abstract

Tutorial Agenda
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DeepWalk: Online Learning of Social Representations
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in the i
nput

grap
h and

the embedd
ing.

Vert
ex color

s rep
resen

t a modul
arity

-base
d

clust
ering

of th
e inpu

t gra
ph.

ommenda
tion

[11],
anom

aly dete
ction

[5], a
nd missin

g link

pred
ictio

n [22])
must be able

to deal
with

this
spar

sity
in

orde
r to

surv
ive.

In this
pape

r we intro
duce

deep
learn

ing
(uns

uper
vised

featu
re learn

ing)
[2] te

chniq
ues,

whic
h have

prov
en succ

ess-

ful in
natu

ral la
ngua

ge pr
ocess

ing,
into

netw
ork anal

ysis
for

the first
time. We deve

lop an algor
ithm

(De

e

p

W

a

l

k

) tha
t

learn
s socia

l rep
resen

tatio
ns of a

grap
h’s verti

ces,
by mod-

eling
a strea

m of shor
t rand

om walk
s. Socia

l rep
resen

ta-

tions
are laten

t fea
tures

of th
e verti

ces that
capt

ure neigh
-

borh
ood

similarit
y and

community
membersh

ip. Thes
e la-

tent
repre

senta
tions

enco
de socia

l rela
tions

in a cont
inuo

us

vecto
r spac

e with
a relat

ively
small n

umber of di
mensio

ns.

D

e

e

p

W

a

l

k

gene
raliz

es ne
ural

lang
uage

models
to proc

ess a

spec
ial la

ngua
ge compose

d of a
set of ra

ndom
ly-ge

nera
ted

walk
s. Thes

e neur
al lang

uage
models

have
been

used
to

capt
ure the semantic

and
synt

actic
struc

ture
of hu

man lan-

guag
e [6], a

nd even
logic

al an
alogi

es [2
8].

D

e

e

p

W

a

l

k

take
s a grap

h as inpu
t and

prod
uces

a la-

tent
repre

senta
tion

as an
outp

ut. T
he re

sult
of ap

plyin
g our

metho
d to the w

ell-st
udie

d Karate
netw

ork is sh
own

in Fig-

ure 1. The
grap

h, as
typic

ally
prese

nted
by force

-dire
cted

layou
ts, is

show
n in Figu

re 1a. F
igure

1b show
s the

outp
ut

of ou
r metho

d with
2 lat

ent d
imensio

ns. B
eyon

d the s
triki

ng

similarit
y, w

e note
that

linea
rly sepa

rable
port

ions
of (1

b)

corre
spon

d to clust
ers f

ound
thro

ugh
modul

arity
maxim

iza-

tion
in the inpu

t gra
ph (1a)

(show
n as ve

rtex
color

s).

To dem
onst

rate
D

e

e

p

W

a

l

k

’s po
tenti

al in
real

worl
d sce-

ar
X

iv
:1

40
3.

66
52

v2
  [

cs
.S

I] 
 2

7 
Ju

n 
20

14

?

??

?



CLIP Lab, National Chengchi University CFDA Lab, Academia Sinica

Ti
ng

-H
si

an
g 

W
an

g,
 T

ex
as

 A
&

M
 U

ni
ve

rs
ity

Lecture Agenda

�4

Q0. Recommendation (REC) and challenges 

Q1. Why graph embedding (GE) for REC 

Q2. SMORe modularization of GE and benefits 

Q3. Exemplar structural modeling for REC 

Q4. REC using SMORe

(Sean)

(Sean)

(Sean)

(CM)

(CM)
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Q0. Recommendation (REC) and challenges 

Q1. Why graph embedding (GE) for REC 

Q2. SMORe modularization of GE and benefits 

Q3. Exemplar structural modeling for REC 

Q4. REC using SMORe

(Sean)

(Sean)

(Sean)

(CM)

(CM)
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REC systems are everywhere !

Movie

Music

Book, Toy, Electronics, etc. Friend, Interest Group

Recruiter, Job Seeker

Local Business

Trend, Following

News, Ad, Media, etc.

And many more …
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• REC center around users to provide customized results 

• CF assumes people agree on things are likely to agree on other things

�7

Let’s start with Collaborative Filtering (CF)
User Item

Sam

Liz

Derek

5

4

3

5

4

Song A

Song B

Song A Song B Song C

Sam 5 4 4

Derek 4 5 ?

Liz - 3 ?

Roger - - ?

☞

→ Sam and Derek have similar tastes; therefore, 

 if Sam likes Song C, it is likely Derek does, too 
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Let’s start with Collaborative Filtering (CF)
User Item

Sam

Liz

Derek

5

4

3

5

4

Song A

Song B

• REC center around users to provide customized results 

• CF assumes people agree on things are likely to agree on other things

Song A Song B Song C

Sam 5 4 4

Derek 4 5 ?

Liz - 3 ?

Roger - - ?

☞

→ Sam and Derek have similar tastes; therefore, 

 if Sam likes Song C, it is likely Derek does, too 

Collaborate
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Let’s start with Collaborative Filtering (CF)
User Item

Sam

Liz

Derek

5

4

3

5

4

Song A

Song B

4

Song C

• REC center around users to provide customized results 

• CF assumes people agree on things are likely to agree on other things

Song A Song B Song C

Sam 5 4 4

Derek 4 5 ?

Liz - 3 ?

Roger - - ?

☞

→ Sam and Derek have similar tastes; therefore, 

 if Sam likes Song C, it is likely Derek does, too 

Collaborate

Filter
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Let’s start with Collaborative Filtering (CF)
User Item

Sam

Liz

Derek

5

4

3

5

4

Song A

Song B

Song A Song B Song C

Sam 5 4 4

Derek 4 5 ?

Liz - 3 ?

Roger - - ?

☞

→ Sam and Derek have similar tastes; therefore, 

 if Sam likes Song C, it is likely Derek does, too 

4

Song C Collaborate

Filter

Recommend

• REC center around users to provide customized results 

• CF assumes people agree on things are likely to agree on other things
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Challenge (1) : Data Sparsity
User Item

Sam

Liz

Derek

5

4

3

5

4

Song A

Song B

• When data sparsity occurs, it is difficult to make accurate REC with CF

Song A Song B Song C

Sam 5 4 4

Derek 4 5 ?

Liz - 3 ?

Roger - - ?
☞

→ Data sparsity occurs to Liz as there is insufficient 

 ratings from Liz to compare her taste with others’

Collaborate
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Challenge (1) : Data Sparsity
User Item

Sam

Liz

Derek

5

4

3

5

4

Song A

Song B

• When data sparsity occurs, it is difficult to make accurate REC with CF

4

Song C

Song A Song B Song C

Sam 5 4 4

Derek 4 5 ?

Liz - 3 ?

Roger - - ?
☞

→ Data sparsity occurs to Liz as there is insufficient 

 ratings from Liz to compare her taste with others’

Collaborate

Filter
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Challenge (1) : Data Sparsity
User Item

Sam

Liz

Derek

5

4

3

5

4

Song A

Song B

• When data sparsity occurs, it is difficult to make accurate REC with CF

4

Song C

Song A Song B Song C

Sam 5 4 4

Derek 4 5 ?

Liz - 3 ?

Roger - - ?
☞

→ Data sparsity occurs to Liz as there is insufficient 

 ratings from Liz to compare her taste with others’

Collaborate

Filter

Recommend
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Challenge (2) : Cold Start
User Item

Sam

Liz

Derek

5

4

3

5

4

Song A

Song B

• When cold start occurs, it is impossible to conduct CF since there is no context 
for comparison

Song A Song B Song C

Sam 5 4 4

Derek 4 5 ?

Liz - 3 ?

Roger - - ?☞
→ Cold Start occurs to Roger as there is NO song 

 rating from Roger to compare his taste with others’

Roger

?? ?
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Challenge (3) : Constant Cold Start

• Some Cold Start situations are constant, i.e., never warm up 

• E.g., event tickets are sold before user-event interactions can occur

November 2, 2019 November 16, 2019 October 16, 2019

→ Today is September 19, 2019
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Common Solution : Add Attributes

→ REC systems often mitigate Complete 

 Cold Start problems by requiring new 

 users to specify interests and items 

 be labeled using tags 

→ By requiring user interests and item tags 

 to come from predefined label set, users 

 and items share context for comparison
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To enrich context for comparison …

Derek

User Item

Sam

Liz

5

4

3

5

4

Song A

Song B

• For additional context for comparison, REC systems often borrow auxiliary 
information, such as item content and user and item attributes 

• This forms a Heterogeneous Information Network (HIN)
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Derek

User Item Attribute

Sam

Liz Singer A

5

4

3

5

4

Song A

Song B

Metal

Rock

Genre, Artist

• For additional context for comparison, REC systems often borrow auxiliary 
information, such as item content and user and item attributes 

• This forms a Heterogeneous Information Network (HIN)

Add auxiliary information …
→ Item attributes are added to improve 

 item comparison, e.g., music genre, 
 artist, metadata, etc.
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Metal

User Item AttributeAttribute

Sam

Liz

Rock

Working

Student

Singer A

5

4

3

5

4

Song A

Song B

Derek

Social NetworkOccupation

• For additional context for comparison, REC systems often borrow auxiliary 
information, such as item content and user and item attributes 

• This forms a Heterogeneous Information Network (HIN)

Genre, Artist
And more auxiliary information !

→ Item attributes are added to improve 

 item comparison, e.g., music genre, 
 artist, metadata, etc. 

→ User attributes are added to improve 

 user comparison, e.g., social network,  

 occupation, favorite artist & genre, etc.
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Metal

• For additional context for comparison, REC systems often borrow auxiliary 
information, such as item content and user and item attributes 

• This forms a Heterogeneous Information Network (HIN)

User Item AttributeAttribute

Sam

Liz

Rock

Working

Student

Singer A

5

4

3

5

4

Song A

Song B

→ Item attributes are added to improve 

 item comparison, e.g., music genre, 
 artist, metadata, etc. 

→ User attributes are added to improve 

 user comparison, e.g., social network,  

 occupation, favorite artist & genre, etc. 

→ HIN gives holistic view of complex systems
Derek

Graph coordinates all relations !
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Q0. Recommendation (REC) and challenges 

Q1. Why graph embedding (GE) for REC 

Q2. SMORe modularization of GE and benefits 

Q3. Exemplar structural modeling for REC 

Q4. REC using SMORe

(Sean)

(Sean)

(Sean)

(CM)

(CM)
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Why Graph ?

1. Universal language for describing complex data [1] 

• Many fields have all chosen graph to depict entity interactions

Twitter Ego-Network

Delta Airline Route Map NetworkCore Sound Food Web
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1. Universal language for describing complex data [1] 

• Many fields have all chosen graph to depict entity interactions 

2. Shared vocabulary (therefore ideas) between fields [1] 

• E.g., distributional hypothesis in linguistics vs. CF in REC systems

User Item

Why Graph ?
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1. Universal language for describing complex data [1] 

• Many fields have all chosen graph to depict entity interactions 

2. Shared vocabulary (therefore ideas) between fields [1] 

• E.g., distributional hypothesis in linguistics vs. CF in REC systems 

3. Holistic view of complex systems of interactions 

• Different domains can easily connect and be jointly mined

User Item Attribute

→ HINs easily integrates information 

 from different domains

Why Graph ?
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1. Universal language for describing complex data [1] 

• Many fields have all chosen graph to depict entity interactions 

2. Shared vocabulary (therefore ideas) between fields [1] 

• E.g., distributional hypothesis in linguistics vs. CF in REC systems 

3. Holistic view of complex systems of interactions 

• Different domains can easily connect and be jointly mined 

4. General definition of contexts used for entity comparison 

• Model graph structure instead specific types of relations

User Item Attribute

→ Different REC approaches, similar 

 structure

CF CBF

Why Graph ?
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1. Universal language for describing complex data [1] 

• Many fields have all chosen graph to depict entity interactions 

2. Shared vocabulary (therefore ideas) between fields [1] 

• E.g., distributional hypothesis in linguistics vs. CF in REC systems 

3. Holistic view of complex systems of interactions 

• Different domains can easily connect and be jointly mined 

4. General definition of contexts used for entity comparison 

• Model graph structure instead specific types of relations 

5. Sophisticated models available from network-related researches 

• Network schema, meta-path, subgraph matching, information propagation, etc.
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(a) ACM data (b) DBLP data

Figure 3: Examples of bibliographic network
schema.

distinct semantics under different paths will lead to different
relatedness. The relatedness under APVC path emphasizes
on the conferences that authors participated, while the relat-
edness under APSPVC path emphasizes on conferences pub-
lishing the papers that have the same subjects with authors’
papers. For example, assume most papers of an author are
published in the KDD, SIGMOD, and VLDB. However, the
papers having the same subjects with the author’s papers
may be published in more wide conferences, such as ICDM,
SDM, and CIKM. So the relatedness of objects depends on
the search path in the heterogeneous networks. Formally,
we define the meta search path as the relevance path.

Definition 2. Relevance Path. A relevance path P is a
path defined on a schema S = (A,R), and is denoted in the

form of A1
R1−→ A2

R2−→ · · ·
Rl−→ Al+1 which defines a composite

relation R = R1 ◦R2 ◦ · · · ◦Rl between type A1 and Al+1, where
◦ denotes the composition operator on relations. The length of
the path P is the number of relations in P, which is l.

For simplicity, we can also use type names denoting the
relevance path if there are no multiple relations between
the same pair of types: P = (A1A2 · · ·Al+1). For exam-
ple, in Fig. 3(a), the relation, authors publishing papers in
conferences, can be described using the length-2 relevance

path A
writting
−→ P

published
−→ V , or short as APV . We say

a concrete path p = (a1a2 · · · al+1) between a1 and al+1 in
network G is a path instance of the relevance path P,
if for each ai, φ(ai) = Ai and each link ei = ⟨ai, ai+1⟩
belongs to the relation Ri in P. It can be denoted as
p ∈ P. A relevance path P−1 is the reverse path of P,
which defines an inverse relation of the one defined by P.
Similarly, we define the reverse path instance of p−1 as
the reverse path of p in G. For example, the reverse path
of the path APV , which means authors publish papers in
venues, is the path V PA which means venues accept au-
thors’ papers. Further, a relevance path P is a symmetric
path, if the relation R defined by it is symmetric (i.e., P
is equal to P−1), such as APA and APCPA. Two rele-
vance paths P1 = (A1A2 · · ·Al) and P2 = (B1B2 · · ·Bk)
are concatenable if and only if Al = B1, and the con-
catenated path is written as P = (P1P2), which equals to
(A1A2 · · ·AlB2 · · ·Bk). A simple concatenable example is
that AP and PV can be concatenated to the path APV .

4. HETESIM: A RELEVANCE MEASURE
4.1 Basic Idea

Figure 4: A simple heterogeneous network example.

In many domains, similar objects are related to similar ob-
jects. For example, similar researchers published many simi-
lar papers; similar customers purchase similar commodities.
As a consequence, two objects are similar if they are refer-
enced by similar objects. This intuition is also fit for hetero-
geneous objects. For example, researchers are more relevant
to the conferences that publish many papers written by the
researchers; and customers are more faithful to brands that
manufacture many products purchased by the customers. A
more concrete example is shown in Fig. 4. Tom is more
relevant to KDD than other conferences, since all of his pa-
pers are published in KDD. Although the similar idea has
been applied in SimRank [5], it is limited to homogeneous
networks. When we apply the idea to heterogeneous net-
works, it faces the following challenges: (1) The relatedness
of heterogeneous objects is path-constrained; (2) The relat-
edness measure based on an asymmetric relevance path has
the symmetric property. In the following section, we will
illustrate these challenges and their solutions.

4.2 Path-based Relevance Measure
Different from homogeneous networks, the paths in hetero-
geneous networks have semantics, which makes the relat-
edness between two objects different on different relevance
paths. Taking Fig. 4 for example, Tom is not related to
SIGMOD based on APC path which means authors pub-
lishing papers in conferences. However, he is related to SIG-
MOD based on APAPC path meaning that the coauthors
of authors publish papers in conferences. So the relevance
measure of objects in heterogeneous networks is based on
the given relevance path.

Following the basic idea that similar objects are related to
similar objects, we propose a path-based relevance measure:
HeteSim.

Definition 3. HeteSim: Given a relevance path P =
R1 ◦R2 ◦ · · · ◦Rl, HeteSim between two objects s and t (s ∈
R1.S and t ∈ Rl.T ) is:

HeteSim(s, t|R1 ◦R2 ◦ · · · ◦Rl) =
1

|O(s|R1)||I(t|Rl)|
|O(s|R1)|∑

i=1

|I(t|Rl)|∑

j=1

HeteSim(Oi(s|R1), Ij(t|Rl)|R2 ◦ · · · ◦Rl−1)

(1)

where O(s|R1) is the out-neighbors of s based on relation
R1, and I(t|Rl) is the in-neighbors of t based on relation Rl.

183

Star-schema [2]

Meta-path [3]

Why Graph ?
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1. Universal language for describing complex data [1] 

• Many fields have all chosen graph to depict entity interactions 

2. Shared vocabulary (therefore ideas) between fields [1] 

• E.g., distributional hypothesis in linguistics vs. CF in REC systems 

3. Holistic view of complex systems of interactions 

• Different domains can easily connect and be jointly mined 

4. General definition of contexts used for entity comparison 

• Model graph structure instead specific types of relations 

5. Sophisticated models available from network-related researches 

• Network schema, meta-path, subgraph matching, information propagation, etc.
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REC as Link Prediction on Graphs

?

??

?

✘

✔
✔

✘

Machine Learning 
Algorithm

• Many ways to compare node similarity: entity types, shared neighbors, distance, etc.  

• Early REC models, e.g., CF and CBF, define intuitive relations for similarity measurement 

• As models mature and data diversity skyrockets nowadays, designing features  
for REC becomes increasingly challenging
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Graph Embedding Pipeline

Hidden layer

Input layer Output layer

Supply Graph Return Embeddings (from hidden Layer)Train Neural Network

DeepWalk: Online Learning of Social Representations
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ABSTRACT
We present DeepWalk, a novel approach for learning la-
tent representations of vertices in a network. These latent
representations encode social relations in a continuous vector
space, which is easily exploited by statistical models. Deep-

Walk generalizes recent advancements in language mod-
eling and unsupervised feature learning (or deep learning)
from sequences of words to graphs.

DeepWalk uses local information obtained from trun-
cated random walks to learn latent representations by treat-
ing walks as the equivalent of sentences. We demonstrate
DeepWalk’s latent representations on several multi-label
network classification tasks for social networks such as Blog-
Catalog, Flickr, and YouTube. Our results show that Deep-

Walk outperforms challenging baselines which are allowed
a global view of the network, especially in the presence of
missing information. DeepWalk’s representations can pro-
vide F

1

scores up to 10% higher than competing methods
when labeled data is sparse. In some experiments, Deep-

Walk’s representations are able to outperform all baseline
methods while using 60% less training data.

DeepWalk is also scalable. It is an online learning algo-
rithm which builds useful incremental results, and is trivially
parallelizable. These qualities make it suitable for a broad
class of real world applications such as network classifica-
tion, and anomaly detection.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
- Data Mining; I.2.6 [Artificial Intelligence]: Learning;
I.5.1 [Pattern Recognition]: Model - Statistical

1. INTRODUCTION
The sparsity of a network representation is both a strength

and a weakness. Sparsity enables the design of e�cient dis-
crete algorithms, but can make it harder to generalize in
statistical learning. Machine learning applications in net-
works (such as network classification [15, 37], content rec-

c�The authors, 2014. This is the author’s draft of the work. It is posted here

for your personal use. Not for redistribution. The definitive version was

published in KDD’14, http://dx.doi.org/10.1145/2623330.
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(a) Input: Karate Graph (b) Output: Representation

Figure 1: Our proposed method learns a latent space rep-
resentation of social interactions in Rd. The learned rep-
resentation encodes community structure so it can be eas-
ily exploited by standard classification methods. Here, our
method is used on Zachary’s Karate network [44] to gen-
erate a latent representation in R2. Note the correspon-
dence between community structure in the input graph and
the embedding. Vertex colors represent a modularity-based
clustering of the input graph.

ommendation [11], anomaly detection [5], and missing link
prediction [22]) must be able to deal with this sparsity in
order to survive.
In this paper we introduce deep learning (unsupervised

feature learning) [2] techniques, which have proven success-
ful in natural language processing, into network analysis for
the first time. We develop an algorithm (DeepWalk) that
learns social representations of a graph’s vertices, by mod-
eling a stream of short random walks. Social representa-
tions are latent features of the vertices that capture neigh-
borhood similarity and community membership. These la-
tent representations encode social relations in a continuous
vector space with a relatively small number of dimensions.
DeepWalk generalizes neural language models to process a
special language composed of a set of randomly-generated
walks. These neural language models have been used to
capture the semantic and syntactic structure of human lan-
guage [6], and even logical analogies [28].
DeepWalk takes a graph as input and produces a la-

tent representation as an output. The result of applying our
method to the well-studied Karate network is shown in Fig-
ure 1. The graph, as typically presented by force-directed
layouts, is shown in Figure 1a. Figure 1b shows the output
of our method with 2 latent dimensions. Beyond the striking
similarity, we note that linearly separable portions of (1b)
correspond to clusters found through modularity maximiza-
tion in the input graph (1a) (shown as vertex colors).
To demonstrate DeepWalk’s potential in real world sce-
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• GE for REC exploits observed links as graph structures to predict unobserved links 

• Entities are converted into spatial features (embeddings) in the hidden layer and  
iteratively updated such that their interactions approximate values in the output layer 

• Entity relatedness is preserved as spatial properties, e.g., distance and angle
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Why Embedding ?

1. Efficient retrieval from approximate nearest neighbor (ANN) search methods 

• E.g., Spotify ANNOY reduces curse of dimensionality during online search by maintaining 
a binary tree of subdivisions such that good enough results can be found in                  [4]

❌Query

O(log n)
<latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit>
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1. Efficient retrieval from approximate nearest neighbor (ANN) search methods 

• E.g., Spotify ANNOY reduces curse of dimensionality during online search by maintaining 
a binary tree of subdivisions such that good enough results can be found in                  [4]

→ Brute force exhaustive search finds the closest nearest neighbors in

❌Query

O(log n)
<latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit>

Why Embedding ?

O(log n!)
<latexit sha1_base64="ZUjF3udMHzVYQ9q9OFGt0N8yXiQ=">AAAB+3icbZC7TsMwFIZPyq2UWygji6FBKkuVdIGxEgsbRaIXqY0qx3Vaq44T2Q6iivoqLAwgxMqLsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLKPy20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJObeb3zSKVisXjQ04T6ER4JFjKCtbEGdrkfhJlz51R5PEKOOHMuZwO74tbchdA6eDlUIFdzYH/1hzFJIyo04Vipnucm2s+w1IxwOiv1U0UTTCZ4RHsGBY6o8rPF7TN0YZwhCmNpntBo4f6eyHCk1DQKTGeE9Vit1ubmf7VeqsNrP2MiSTUVZLkoTDnSMZoHgYZMUqL51AAmkplbERljiYk2cZVMCN7ql9ehXa95hu/rlUYjj6MIp3AOVfDgChpwC01oAYEneIZXeLNm1ov1bn0sWwtWPnMCf2R9/gA8KZKY</latexit><latexit sha1_base64="ZUjF3udMHzVYQ9q9OFGt0N8yXiQ=">AAAB+3icbZC7TsMwFIZPyq2UWygji6FBKkuVdIGxEgsbRaIXqY0qx3Vaq44T2Q6iivoqLAwgxMqLsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLKPy20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJObeb3zSKVisXjQ04T6ER4JFjKCtbEGdrkfhJlz51R5PEKOOHMuZwO74tbchdA6eDlUIFdzYH/1hzFJIyo04Vipnucm2s+w1IxwOiv1U0UTTCZ4RHsGBY6o8rPF7TN0YZwhCmNpntBo4f6eyHCk1DQKTGeE9Vit1ubmf7VeqsNrP2MiSTUVZLkoTDnSMZoHgYZMUqL51AAmkplbERljiYk2cZVMCN7ql9ehXa95hu/rlUYjj6MIp3AOVfDgChpwC01oAYEneIZXeLNm1ov1bn0sWwtWPnMCf2R9/gA8KZKY</latexit><latexit sha1_base64="ZUjF3udMHzVYQ9q9OFGt0N8yXiQ=">AAAB+3icbZC7TsMwFIZPyq2UWygji6FBKkuVdIGxEgsbRaIXqY0qx3Vaq44T2Q6iivoqLAwgxMqLsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLKPy20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJObeb3zSKVisXjQ04T6ER4JFjKCtbEGdrkfhJlz51R5PEKOOHMuZwO74tbchdA6eDlUIFdzYH/1hzFJIyo04Vipnucm2s+w1IxwOiv1U0UTTCZ4RHsGBY6o8rPF7TN0YZwhCmNpntBo4f6eyHCk1DQKTGeE9Vit1ubmf7VeqsNrP2MiSTUVZLkoTDnSMZoHgYZMUqL51AAmkplbERljiYk2cZVMCN7ql9ehXa95hu/rlUYjj6MIp3AOVfDgChpwC01oAYEneIZXeLNm1ov1bn0sWwtWPnMCf2R9/gA8KZKY</latexit><latexit sha1_base64="ZUjF3udMHzVYQ9q9OFGt0N8yXiQ=">AAAB+3icbZC7TsMwFIZPyq2UWygji6FBKkuVdIGxEgsbRaIXqY0qx3Vaq44T2Q6iivoqLAwgxMqLsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLKPy20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJObeb3zSKVisXjQ04T6ER4JFjKCtbEGdrkfhJlz51R5PEKOOHMuZwO74tbchdA6eDlUIFdzYH/1hzFJIyo04Vipnucm2s+w1IxwOiv1U0UTTCZ4RHsGBY6o8rPF7TN0YZwhCmNpntBo4f6eyHCk1DQKTGeE9Vit1ubmf7VeqsNrP2MiSTUVZLkoTDnSMZoHgYZMUqL51AAmkplbERljiYk2cZVMCN7ql9ehXa95hu/rlUYjj6MIp3AOVfDgChpwC01oAYEneIZXeLNm1ov1bn0sWwtWPnMCf2R9/gA8KZKY</latexit>
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1. Efficient retrieval from approximate nearest neighbor (ANN) search methods 

• E.g., Spotify ANNOY reduces curse of dimensionality during online search by maintaining 
a binary tree of subdivisions such that good enough results can be found in                  [4]

❌Query

O(log n)
<latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit>

Why Embedding ?

→ Brute force exhaustive search finds the closest nearest neighbors in O(log n!)
<latexit sha1_base64="ZUjF3udMHzVYQ9q9OFGt0N8yXiQ=">AAAB+3icbZC7TsMwFIZPyq2UWygji6FBKkuVdIGxEgsbRaIXqY0qx3Vaq44T2Q6iivoqLAwgxMqLsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLKPy20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJObeb3zSKVisXjQ04T6ER4JFjKCtbEGdrkfhJlz51R5PEKOOHMuZwO74tbchdA6eDlUIFdzYH/1hzFJIyo04Vipnucm2s+w1IxwOiv1U0UTTCZ4RHsGBY6o8rPF7TN0YZwhCmNpntBo4f6eyHCk1DQKTGeE9Vit1ubmf7VeqsNrP2MiSTUVZLkoTDnSMZoHgYZMUqL51AAmkplbERljiYk2cZVMCN7ql9ehXa95hu/rlUYjj6MIp3AOVfDgChpwC01oAYEneIZXeLNm1ov1bn0sWwtWPnMCf2R9/gA8KZKY</latexit><latexit sha1_base64="ZUjF3udMHzVYQ9q9OFGt0N8yXiQ=">AAAB+3icbZC7TsMwFIZPyq2UWygji6FBKkuVdIGxEgsbRaIXqY0qx3Vaq44T2Q6iivoqLAwgxMqLsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLKPy20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJObeb3zSKVisXjQ04T6ER4JFjKCtbEGdrkfhJlz51R5PEKOOHMuZwO74tbchdA6eDlUIFdzYH/1hzFJIyo04Vipnucm2s+w1IxwOiv1U0UTTCZ4RHsGBY6o8rPF7TN0YZwhCmNpntBo4f6eyHCk1DQKTGeE9Vit1ubmf7VeqsNrP2MiSTUVZLkoTDnSMZoHgYZMUqL51AAmkplbERljiYk2cZVMCN7ql9ehXa95hu/rlUYjj6MIp3AOVfDgChpwC01oAYEneIZXeLNm1ov1bn0sWwtWPnMCf2R9/gA8KZKY</latexit><latexit sha1_base64="ZUjF3udMHzVYQ9q9OFGt0N8yXiQ=">AAAB+3icbZC7TsMwFIZPyq2UWygji6FBKkuVdIGxEgsbRaIXqY0qx3Vaq44T2Q6iivoqLAwgxMqLsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLKPy20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJObeb3zSKVisXjQ04T6ER4JFjKCtbEGdrkfhJlz51R5PEKOOHMuZwO74tbchdA6eDlUIFdzYH/1hzFJIyo04Vipnucm2s+w1IxwOiv1U0UTTCZ4RHsGBY6o8rPF7TN0YZwhCmNpntBo4f6eyHCk1DQKTGeE9Vit1ubmf7VeqsNrP2MiSTUVZLkoTDnSMZoHgYZMUqL51AAmkplbERljiYk2cZVMCN7ql9ehXa95hu/rlUYjj6MIp3AOVfDgChpwC01oAYEneIZXeLNm1ov1bn0sWwtWPnMCf2R9/gA8KZKY</latexit><latexit sha1_base64="ZUjF3udMHzVYQ9q9OFGt0N8yXiQ=">AAAB+3icbZC7TsMwFIZPyq2UWygji6FBKkuVdIGxEgsbRaIXqY0qx3Vaq44T2Q6iivoqLAwgxMqLsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLKPy20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJObeb3zSKVisXjQ04T6ER4JFjKCtbEGdrkfhJlz51R5PEKOOHMuZwO74tbchdA6eDlUIFdzYH/1hzFJIyo04Vipnucm2s+w1IxwOiv1U0UTTCZ4RHsGBY6o8rPF7TN0YZwhCmNpntBo4f6eyHCk1DQKTGeE9Vit1ubmf7VeqsNrP2MiSTUVZLkoTDnSMZoHgYZMUqL51AAmkplbERljiYk2cZVMCN7ql9ehXa95hu/rlUYjj6MIp3AOVfDgChpwC01oAYEneIZXeLNm1ov1bn0sWwtWPnMCf2R9/gA8KZKY</latexit>
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1. Efficient retrieval from approximate nearest neighbor (ANN) search methods 

• E.g., Spotify ANNOY reduces curse of dimensionality during online search by maintaining 
a binary tree of subdivisions such that good enough results can be found in                  [4]

❌Query

→ Spotify ANNOY builds binary tree of subdivisions to quickly find closest neighbors

O(log n)
<latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit>

Why Embedding ?
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1. Efficient retrieval from approximate nearest neighbor (ANN) search methods 

• E.g., Spotify ANNOY reduces curse of dimensionality during online search by maintaining 
a binary tree of subdivisions such that good enough results can be found in                  [4]

❌Query

O(log n)
<latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit><latexit sha1_base64="XMGJBZt/opmMHuBWeobJ4tunTBM=">AAAB+nicbZC7TsMwFIZPyq2UWwoji0WDVJYq6QJjJRY2ikQvUhtVjuu0Vh0nsh1QFfooLAwgxMqTsPE2uG0GaPklS5/+c47O8R8knCntut9WYWNza3unuFva2z84PLLLx20Vp5LQFol5LLsBVpQzQVuaaU67iaQ4CjjtBJPreb3zQKVisbjX04T6ER4JFjKCtbEGdrkfhJlz61R5PEKOcC5mA7vi1tyF0Dp4OVQgV3Ngf/WHMUkjKjThWKme5ybaz7DUjHA6K/VTRRNMJnhEewYFjqjys8XpM3RunCEKY2me0Gjh/p7IcKTUNApMZ4T1WK3W5uZ/tV6qwys/YyJJNRVkuShMOdIxmueAhkxSovnUACaSmVsRGWOJiTZplUwI3uqX16Fdr3mG7+qVRiOPowincAZV8OASGnADTWgBgUd4hld4s56sF+vd+li2Fqx85gT+yPr8AeA+km0=</latexit>

Why Embedding ?

→ Spotify ANNOY builds binary tree of subdivisions to quickly find closest neighbors
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1. Efficient retrieval from approximate nearest neighbor (ANN) search methods 

• E.g., Spotify ANNOY reduces curse of dimensionality during online search by maintaining 
a binary tree of subdivisions such that good enough results can be found in                  [4] 

2. Efficient pairwise comparison due to dimensionality reduction (DR) 

• Lower dimension costs less to calculate feature similarity

O(log n)
<latexit sha1_base64="CpYTxtDU/JE+emzgwPLx6uI+9ck=">AAAB+nicdVDLTsJAFL3FF+Kr6NLNRGqCG9KyUJckbtyJiYAJNGQ6TGHCdNrMTDWk8iluXGiMW7/EnX/jFDDxeZKbe3LOvZk7J0g4U9p1363C0vLK6lpxvbSxubW9Y5d32ypOJaEtEvNYXgdYUc4EbWmmOb1OJMVRwGknGJ/lfueGSsVicaUnCfUjPBQsZARrI/Xtci8IM+fCqfJ4iBzhHE37dsWtHbs50G/i1WbdrcACzb791hvEJI2o0IRjpbqem2g/w1Izwum01EsVTTAZ4yHtGipwRJWfzU6fokOjDFAYS1NCo5n6dSPDkVKTKDCTEdYj9dPLxb+8bqrDUz9jIkk1FWT+UJhypGOU54AGTFKi+cQQTCQztyIywhITbdIqmRA+f4r+J+16zTP8sl5pNBZxFGEfDqAKHpxAA86hCS0gcAv38AhP1p31YD1bL/PRgrXY2YNvsF4/APp4kn8=</latexit><latexit sha1_base64="CpYTxtDU/JE+emzgwPLx6uI+9ck=">AAAB+nicdVDLTsJAFL3FF+Kr6NLNRGqCG9KyUJckbtyJiYAJNGQ6TGHCdNrMTDWk8iluXGiMW7/EnX/jFDDxeZKbe3LOvZk7J0g4U9p1363C0vLK6lpxvbSxubW9Y5d32ypOJaEtEvNYXgdYUc4EbWmmOb1OJMVRwGknGJ/lfueGSsVicaUnCfUjPBQsZARrI/Xtci8IM+fCqfJ4iBzhHE37dsWtHbs50G/i1WbdrcACzb791hvEJI2o0IRjpbqem2g/w1Izwum01EsVTTAZ4yHtGipwRJWfzU6fokOjDFAYS1NCo5n6dSPDkVKTKDCTEdYj9dPLxb+8bqrDUz9jIkk1FWT+UJhypGOU54AGTFKi+cQQTCQztyIywhITbdIqmRA+f4r+J+16zTP8sl5pNBZxFGEfDqAKHpxAA86hCS0gcAv38AhP1p31YD1bL/PRgrXY2YNvsF4/APp4kn8=</latexit><latexit sha1_base64="CpYTxtDU/JE+emzgwPLx6uI+9ck=">AAAB+nicdVDLTsJAFL3FF+Kr6NLNRGqCG9KyUJckbtyJiYAJNGQ6TGHCdNrMTDWk8iluXGiMW7/EnX/jFDDxeZKbe3LOvZk7J0g4U9p1363C0vLK6lpxvbSxubW9Y5d32ypOJaEtEvNYXgdYUc4EbWmmOb1OJMVRwGknGJ/lfueGSsVicaUnCfUjPBQsZARrI/Xtci8IM+fCqfJ4iBzhHE37dsWtHbs50G/i1WbdrcACzb791hvEJI2o0IRjpbqem2g/w1Izwum01EsVTTAZ4yHtGipwRJWfzU6fokOjDFAYS1NCo5n6dSPDkVKTKDCTEdYj9dPLxb+8bqrDUz9jIkk1FWT+UJhypGOU54AGTFKi+cQQTCQztyIywhITbdIqmRA+f4r+J+16zTP8sl5pNBZxFGEfDqAKHpxAA86hCS0gcAv38AhP1p31YD1bL/PRgrXY2YNvsF4/APp4kn8=</latexit><latexit sha1_base64="CpYTxtDU/JE+emzgwPLx6uI+9ck=">AAAB+nicdVDLTsJAFL3FF+Kr6NLNRGqCG9KyUJckbtyJiYAJNGQ6TGHCdNrMTDWk8iluXGiMW7/EnX/jFDDxeZKbe3LOvZk7J0g4U9p1363C0vLK6lpxvbSxubW9Y5d32ypOJaEtEvNYXgdYUc4EbWmmOb1OJMVRwGknGJ/lfueGSsVicaUnCfUjPBQsZARrI/Xtci8IM+fCqfJ4iBzhHE37dsWtHbs50G/i1WbdrcACzb791hvEJI2o0IRjpbqem2g/w1Izwum01EsVTTAZ4yHtGipwRJWfzU6fokOjDFAYS1NCo5n6dSPDkVKTKDCTEdYj9dPLxb+8bqrDUz9jIkk1FWT+UJhypGOU54AGTFKi+cQQTCQztyIywhITbdIqmRA+f4r+J+16zTP8sl5pNBZxFGEfDqAKHpxAA86hCS0gcAv38AhP1p31YD1bL/PRgrXY2YNvsF4/APp4kn8=</latexit>

Why Embedding ?
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1. Efficient retrieval from approximate nearest neighbor (ANN) search methods 

• E.g., Spotify ANNOY reduces curse of dimensionality during online search by maintaining 
a binary tree of subdivisions such that good enough results can be found in                  [4] 

2. Efficient pairwise comparison due to dimensionality reduction (DR) 

• Lower dimension costs less to calculate feature similarity 

3. Reduced space complexity due to DR 

• Lower dimension costs less storage space

O(log n)
<latexit sha1_base64="CpYTxtDU/JE+emzgwPLx6uI+9ck=">AAAB+nicdVDLTsJAFL3FF+Kr6NLNRGqCG9KyUJckbtyJiYAJNGQ6TGHCdNrMTDWk8iluXGiMW7/EnX/jFDDxeZKbe3LOvZk7J0g4U9p1363C0vLK6lpxvbSxubW9Y5d32ypOJaEtEvNYXgdYUc4EbWmmOb1OJMVRwGknGJ/lfueGSsVicaUnCfUjPBQsZARrI/Xtci8IM+fCqfJ4iBzhHE37dsWtHbs50G/i1WbdrcACzb791hvEJI2o0IRjpbqem2g/w1Izwum01EsVTTAZ4yHtGipwRJWfzU6fokOjDFAYS1NCo5n6dSPDkVKTKDCTEdYj9dPLxb+8bqrDUz9jIkk1FWT+UJhypGOU54AGTFKi+cQQTCQztyIywhITbdIqmRA+f4r+J+16zTP8sl5pNBZxFGEfDqAKHpxAA86hCS0gcAv38AhP1p31YD1bL/PRgrXY2YNvsF4/APp4kn8=</latexit><latexit sha1_base64="CpYTxtDU/JE+emzgwPLx6uI+9ck=">AAAB+nicdVDLTsJAFL3FF+Kr6NLNRGqCG9KyUJckbtyJiYAJNGQ6TGHCdNrMTDWk8iluXGiMW7/EnX/jFDDxeZKbe3LOvZk7J0g4U9p1363C0vLK6lpxvbSxubW9Y5d32ypOJaEtEvNYXgdYUc4EbWmmOb1OJMVRwGknGJ/lfueGSsVicaUnCfUjPBQsZARrI/Xtci8IM+fCqfJ4iBzhHE37dsWtHbs50G/i1WbdrcACzb791hvEJI2o0IRjpbqem2g/w1Izwum01EsVTTAZ4yHtGipwRJWfzU6fokOjDFAYS1NCo5n6dSPDkVKTKDCTEdYj9dPLxb+8bqrDUz9jIkk1FWT+UJhypGOU54AGTFKi+cQQTCQztyIywhITbdIqmRA+f4r+J+16zTP8sl5pNBZxFGEfDqAKHpxAA86hCS0gcAv38AhP1p31YD1bL/PRgrXY2YNvsF4/APp4kn8=</latexit><latexit sha1_base64="CpYTxtDU/JE+emzgwPLx6uI+9ck=">AAAB+nicdVDLTsJAFL3FF+Kr6NLNRGqCG9KyUJckbtyJiYAJNGQ6TGHCdNrMTDWk8iluXGiMW7/EnX/jFDDxeZKbe3LOvZk7J0g4U9p1363C0vLK6lpxvbSxubW9Y5d32ypOJaEtEvNYXgdYUc4EbWmmOb1OJMVRwGknGJ/lfueGSsVicaUnCfUjPBQsZARrI/Xtci8IM+fCqfJ4iBzhHE37dsWtHbs50G/i1WbdrcACzb791hvEJI2o0IRjpbqem2g/w1Izwum01EsVTTAZ4yHtGipwRJWfzU6fokOjDFAYS1NCo5n6dSPDkVKTKDCTEdYj9dPLxb+8bqrDUz9jIkk1FWT+UJhypGOU54AGTFKi+cQQTCQztyIywhITbdIqmRA+f4r+J+16zTP8sl5pNBZxFGEfDqAKHpxAA86hCS0gcAv38AhP1p31YD1bL/PRgrXY2YNvsF4/APp4kn8=</latexit><latexit sha1_base64="CpYTxtDU/JE+emzgwPLx6uI+9ck=">AAAB+nicdVDLTsJAFL3FF+Kr6NLNRGqCG9KyUJckbtyJiYAJNGQ6TGHCdNrMTDWk8iluXGiMW7/EnX/jFDDxeZKbe3LOvZk7J0g4U9p1363C0vLK6lpxvbSxubW9Y5d32ypOJaEtEvNYXgdYUc4EbWmmOb1OJMVRwGknGJ/lfueGSsVicaUnCfUjPBQsZARrI/Xtci8IM+fCqfJ4iBzhHE37dsWtHbs50G/i1WbdrcACzb791hvEJI2o0IRjpbqem2g/w1Izwum01EsVTTAZ4yHtGipwRJWfzU6fokOjDFAYS1NCo5n6dSPDkVKTKDCTEdYj9dPLxb+8bqrDUz9jIkk1FWT+UJhypGOU54AGTFKi+cQQTCQztyIywhITbdIqmRA+f4r+J+16zTP8sl5pNBZxFGEfDqAKHpxAA86hCS0gcAv38AhP1p31YD1bL/PRgrXY2YNvsF4/APp4kn8=</latexit>

Why Embedding ?
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1. Efficient retrieval from approximate nearest neighbor (ANN) search methods 

• E.g., Spotify ANNOY reduces curse of dimensionality during online search by maintaining 
a binary tree of subdivisions such that good enough results can be found in                  [4] 

2. Efficient pairwise comparison due to dimensionality reduction (DR) 

• Lower dimension costs less to calculate feature similarity 

3. Reduced space complexity due to DR 

• Lower dimension costs less storage space 

4. Transfer learning with pertained embeddings 

• Pretrained embeddings are better guesses than randomly initialized vectors

O(log n)
<latexit sha1_base64="CpYTxtDU/JE+emzgwPLx6uI+9ck=">AAAB+nicdVDLTsJAFL3FF+Kr6NLNRGqCG9KyUJckbtyJiYAJNGQ6TGHCdNrMTDWk8iluXGiMW7/EnX/jFDDxeZKbe3LOvZk7J0g4U9p1363C0vLK6lpxvbSxubW9Y5d32ypOJaEtEvNYXgdYUc4EbWmmOb1OJMVRwGknGJ/lfueGSsVicaUnCfUjPBQsZARrI/Xtci8IM+fCqfJ4iBzhHE37dsWtHbs50G/i1WbdrcACzb791hvEJI2o0IRjpbqem2g/w1Izwum01EsVTTAZ4yHtGipwRJWfzU6fokOjDFAYS1NCo5n6dSPDkVKTKDCTEdYj9dPLxb+8bqrDUz9jIkk1FWT+UJhypGOU54AGTFKi+cQQTCQztyIywhITbdIqmRA+f4r+J+16zTP8sl5pNBZxFGEfDqAKHpxAA86hCS0gcAv38AhP1p31YD1bL/PRgrXY2YNvsF4/APp4kn8=</latexit><latexit sha1_base64="CpYTxtDU/JE+emzgwPLx6uI+9ck=">AAAB+nicdVDLTsJAFL3FF+Kr6NLNRGqCG9KyUJckbtyJiYAJNGQ6TGHCdNrMTDWk8iluXGiMW7/EnX/jFDDxeZKbe3LOvZk7J0g4U9p1363C0vLK6lpxvbSxubW9Y5d32ypOJaEtEvNYXgdYUc4EbWmmOb1OJMVRwGknGJ/lfueGSsVicaUnCfUjPBQsZARrI/Xtci8IM+fCqfJ4iBzhHE37dsWtHbs50G/i1WbdrcACzb791hvEJI2o0IRjpbqem2g/w1Izwum01EsVTTAZ4yHtGipwRJWfzU6fokOjDFAYS1NCo5n6dSPDkVKTKDCTEdYj9dPLxb+8bqrDUz9jIkk1FWT+UJhypGOU54AGTFKi+cQQTCQztyIywhITbdIqmRA+f4r+J+16zTP8sl5pNBZxFGEfDqAKHpxAA86hCS0gcAv38AhP1p31YD1bL/PRgrXY2YNvsF4/APp4kn8=</latexit><latexit sha1_base64="CpYTxtDU/JE+emzgwPLx6uI+9ck=">AAAB+nicdVDLTsJAFL3FF+Kr6NLNRGqCG9KyUJckbtyJiYAJNGQ6TGHCdNrMTDWk8iluXGiMW7/EnX/jFDDxeZKbe3LOvZk7J0g4U9p1363C0vLK6lpxvbSxubW9Y5d32ypOJaEtEvNYXgdYUc4EbWmmOb1OJMVRwGknGJ/lfueGSsVicaUnCfUjPBQsZARrI/Xtci8IM+fCqfJ4iBzhHE37dsWtHbs50G/i1WbdrcACzb791hvEJI2o0IRjpbqem2g/w1Izwum01EsVTTAZ4yHtGipwRJWfzU6fokOjDFAYS1NCo5n6dSPDkVKTKDCTEdYj9dPLxb+8bqrDUz9jIkk1FWT+UJhypGOU54AGTFKi+cQQTCQztyIywhITbdIqmRA+f4r+J+16zTP8sl5pNBZxFGEfDqAKHpxAA86hCS0gcAv38AhP1p31YD1bL/PRgrXY2YNvsF4/APp4kn8=</latexit><latexit sha1_base64="CpYTxtDU/JE+emzgwPLx6uI+9ck=">AAAB+nicdVDLTsJAFL3FF+Kr6NLNRGqCG9KyUJckbtyJiYAJNGQ6TGHCdNrMTDWk8iluXGiMW7/EnX/jFDDxeZKbe3LOvZk7J0g4U9p1363C0vLK6lpxvbSxubW9Y5d32ypOJaEtEvNYXgdYUc4EbWmmOb1OJMVRwGknGJ/lfueGSsVicaUnCfUjPBQsZARrI/Xtci8IM+fCqfJ4iBzhHE37dsWtHbs50G/i1WbdrcACzb791hvEJI2o0IRjpbqem2g/w1Izwum01EsVTTAZ4yHtGipwRJWfzU6fokOjDFAYS1NCo5n6dSPDkVKTKDCTEdYj9dPLxb+8bqrDUz9jIkk1FWT+UJhypGOU54AGTFKi+cQQTCQztyIywhITbdIqmRA+f4r+J+16zTP8sl5pNBZxFGEfDqAKHpxAA86hCS0gcAv38AhP1p31YD1bL/PRgrXY2YNvsF4/APp4kn8=</latexit>

Why Embedding ?
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GE for REC : Challenges

• So graph embedding is GREAT for recommendation : 

• Reduces data sparsity and cold start via integrating auxiliary information 

• Provides holistic view of REC problem and jointly mines different relations in 

terms of graph structures 

• Trains fast, compares fast, and retrieves fast while taking less space
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�39

• So graph embedding is GREAT for recommendation : 

• Reduces data sparsity and cold start via integrating auxiliary information 

• Provides holistic view of REC problem and jointly mines different relations in 

terms of graph structures 

• Trains fast, compares fast, and retrieves fast while taking less space  

• What’s the catch ?

GE for REC : Challenges
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Lecture Agenda

�40

Q0. Recommendation (REC) and challenges 

Q1. Why graph embedding (GE) for REC 

Q2. SMORe modularization of GE and benefits 

Q3. Exemplar structural modeling for REC 

Q4. REC using SMORe

(Sean)

(Sean)

(Sean)

(CM)

(CM)
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Embedding space

Let’s look at GE process …
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Let’s look at GE process …

�42

…

Graph structures

Embedding space
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Let’s look at GE process …

…

�43

Samples relation

A

B

BA

Graph structures

A B

Embedding space
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Let’s look at GE process …

…

B

A

�44

Samples relation

A

B

BA

Graph structures

Maps entities to space

Embedding space
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Let’s look at GE process …

…

�45

Samples relation

A

B

BA

Embedding space

Graph structures

A B

Maps entities to space

   Optimizes distance
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Challenge (1) : Select structure is HARD

A B

�46

Embedding space

Graph structures

Maps entities to spaceB

Samples relation

A
BA

…

→ Unsure which graph structures 

 best model current REC task

   Optimizes distance
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Challenge (1) : Select structure is HARD

A B

�47

Embedding space

Graph structures

Maps entities to spaceB

Samples relation

A
BA

…

5

8 7

6

2

3

1

4

 In bipartite, model       &       by 
 neighborhood is intuitive; but in 
 planar,       &       are also shown 
 similar in betweenness 

g j

5 7

→ Unsure which graph structures 

 best model current REC task

   Optimizes distance
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Challenge (1) : Select structure is HARD

A B

�48

Embedding space

Graph structures

Maps entities to spaceB

Samples relation

A
BA

…

5

8 7

6

2

3

1

4

 In bipartite, model       &       by 
 neighborhood is intuitive; but in 
 planar,       &       are also shown 
 similar in betweenness 

g j

5 7

→ Unsure which graph structures 

 best model current REC task

   Optimizes distance
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Challenge (2) : Customize GE model

A B

�49

Embedding space

Graph structures

Maps entities to spaceB

Samples relation

A
BA

…

→ Wanna customize GE methods 

 during each stage of training

→ Unsure which graph structures 

 best model current REC task

   Optimizes distance
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Challenge (3) : Make fair comparison

A B

�50

Embedding space

Graph structures

Maps entities to spaceB

Samples relation

A
BA

…

→ Wanna customize GE methods 

 during each stage of training

→ Difficult to compare models as 

 their implementations often vary

→ Unsure which graph structures 

 best model current REC task

   Optimizes distance
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Solution : Modularize GE for adaptability !

�51

…

Samples relation

BA

Embedding space

Graph structures

A B

Maps entities to space

   Optimizes distance
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…

Samples relation

BA

Embedding space

Graph structures

A B

Maps entities to space

   Optimizes distance

�52

Sampler

Mapper

Optimizer

Solution : Modularize GE for adaptability !
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Solution : Modularize GE for adaptability !

A B

�53

…

Samples relation

BA

Embedding space

Graph structures

Maps entities to space

   Optimizes distance

Sampler

Mapper

Optimizer

• Extracts graph structures from dataset 

while remains type-agnostic to sampled 

entities, i.e., nodes & edges

E : {(v1, v2)|(v1, v2) 2 V ⇥ V }
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� : E ! R
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G = (V,E,R,�)
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CLIP Lab, National Chengchi University CFDA Lab, Academia Sinica

Ti
ng

-H
si

an
g 

W
an

g,
 T

ex
as

 A
&

M
 U

ni
ve

rs
ity

Solution : Modularize GE for adaptability !

�54

…

Samples relation

BA

Embedding space

Graph structures

A B

Maps entities to space

Sampler

Mapper

Optimizer

• Converts entities into spatial features 

via embedding stacking operations, 

e.g, lookup, pooling (average, etc.)

f : (p) ! Rd
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   Optimizes distance
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BA
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…

Samples relation

Embedding space

Graph structures

A B

Maps entities to space

Sampler

Mapper

Optimizer

• Preserves entity relatedness as spatial 

properties with customizable similarity 

metrics and loss functions

projection f(x
j

) should, to some extent, capture item j’s
characteristics, we penalize the item j’s eventual location
in the space (i.e., v

j

) when v
j

deviates away from f(x
j

).
Specifically, let ✓ denote the parameters of the function f ,
we define the following L2 loss function:

L
f

(✓,v⇤) =
X

j

kf(xj, ✓)� v
j

k2.

This loss function essentially treats f(x
j

) as a Gaussian prior
to v

j

, and we fine-tune the location of v
j

when we have more
information about it (i.e., more ratings). Note that the func-
tion f is trainable, and during the training, we simultane-
ously minimize L

f

and metric loss L
m

described earlier to
make function f and v⇤ mutually inform each other. Specif-
ically, the transformation function f is informed by v⇤ and
learns to pick up the features that are most relevant to users’
preferences; and v⇤ is informed by f in a way that the items
with similar features will tend to be clustered together and
improve the metric accuracy especially for less-rated items.
We choose multi-layer perceptron (MLP) with dropout
as our transformation function f for its superior representa-
tional capacity and ease of training [14, 5].

3.4 Regularization
A proper regularization scheme is crucial to the feasibility

of the proposed model. Our model essentially projects users
and items to a joint r-dimensional space. The number of
dimensions determines the representational capacity of the
model. However, a kNN-based model like the one we pro-
pose is known to be ine↵ective in a high-dimensional space
if the data points spread too widely (i.e., the curse of di-
mensionality) [11]. Therefore, we bound all the user/item
u⇤ and v⇤ within a unit sphere, i.e.,

ku⇤k2  1 and kv⇤k2  1,

to ensure the robustness of the learned metric. Note that,
unlike many matrix factorization models, we do not regular-
ize the L

2-norm of v⇤ or u⇤. Regularizing L

2-norm creates
a gradient that pulls every object toward the origin. It is
not applicable here because the origin in our metric space
does not have any specific meaning.
Another regularization technique we use is covariance reg-

ularization recently proposed by Cogswell et al. [9] used to
reduce the correlation between activations in a deep neu-
ral network. We found the same principle is also useful in
de-correlating the dimensions in the learned metric. Let yn

denote an object’s latent vector where an object can be a
user or an item, and n indexes the object in a batch of size
N . The covariances between all pairs of dimensions i and j

form a matrix C:

C

ij

=
1
N

X

n

(yn

i

� µ

i

)(yn

j

� µ

j

),

where µ

i

= 1

N

P
n

y

n

i

. We define the loss L
c

to regularize
the covariances:

L
c

=
1
N

(kCk
f

� kdiag(C)k2
2

),

where k · k
f

is the Frobenius norm. As covariances can be
seen as a measure of linear redundancy between dimensions,
this loss essentially tries to prevent each dimension from
being redundant and encourages the whole system to more
e�ciently utilize the given space.
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Figure 3: Example latent vector assignments for ma-
trix factorization and CML. The table on the right
shows user/item’s preference relationships.

3.5 Training Procedure
The complete objective function of the proposed model is

as follows:

min
✓,u⇤,v⇤

L
m

+ �

f

L
f

+ �

c

L
c

s.t. ku⇤k2  1 and kv⇤k2  1,

where �
f

and �

c

are hyperparameters that control the weight
of each loss term. We minimize this constrained objec-
tive function with Mini-Batch Stochastic Gradient Descent
(SGD) and control the learning rating using AdaGrad [10],
as suggested in [28]. Our training procedure is as follows:

1. Sample N positive pairs from S
2. For each pair, sample U negative items and approxi-

mate rank

d

(i, j) as described in Section 3.2

3. For each pair, keep the negative item k that maximizes
the hinge loss and form a mini-batch of size N .

4. Compute gradients and update parameters with a learn-
ing rate controlled by AdaGrad.

5. Censor the norm of u⇤ and v⇤ by y0 = y
max(kyk,1) .

6. Repeat this procedure until convergence.

3.6 Relation to Other Models
In this subsection, we describe the relation between CML

and other collaborative filtering models. At a high level, the
formulation of CML is similar to that of BPR or other pair-
wise matrix factorization models described in Section 2.3.1.
However, the fact that these matrix factorization models
rely on dot product, which does not satisfy the triangle in-
equality, leads to two important consequences illustrated in
the following.
Figure 3 shows three equally-sized groups of users labeled

as U

1

, U

2

and U

3

, where U

1

liked item v

1

, U

2

liked item
v

2

, and U

3

liked both item v

1

and v

2

. Figure 3 shows a
stable setting for a matrix factorization system. The setting
is stable in a way that the dot product between user/item
vectors= 2 when the user liked the item, otherwise their
dot-product= 0. However, an important observation is that
the dot-product between the item v

1

and item v

2

is 0 even
if U

3

like both of them. This violates the triangle inequality
because the positive relationships between the pairs (U

3

, v
1

)

projection f(x
j

) should, to some extent, capture item j’s
characteristics, we penalize the item j’s eventual location
in the space (i.e., v

j

) when v
j

deviates away from f(x
j

).
Specifically, let ✓ denote the parameters of the function f ,
we define the following L2 loss function:

L
f

(✓,v⇤) =
X

j

kf(xj, ✓)� v
j

k2.

This loss function essentially treats f(x
j

) as a Gaussian prior
to v

j

, and we fine-tune the location of v
j

when we have more
information about it (i.e., more ratings). Note that the func-
tion f is trainable, and during the training, we simultane-
ously minimize L

f

and metric loss L
m

described earlier to
make function f and v⇤ mutually inform each other. Specif-
ically, the transformation function f is informed by v⇤ and
learns to pick up the features that are most relevant to users’
preferences; and v⇤ is informed by f in a way that the items
with similar features will tend to be clustered together and
improve the metric accuracy especially for less-rated items.
We choose multi-layer perceptron (MLP) with dropout
as our transformation function f for its superior representa-
tional capacity and ease of training [14, 5].

3.4 Regularization
A proper regularization scheme is crucial to the feasibility

of the proposed model. Our model essentially projects users
and items to a joint r-dimensional space. The number of
dimensions determines the representational capacity of the
model. However, a kNN-based model like the one we pro-
pose is known to be ine↵ective in a high-dimensional space
if the data points spread too widely (i.e., the curse of di-
mensionality) [11]. Therefore, we bound all the user/item
u⇤ and v⇤ within a unit sphere, i.e.,

ku⇤k2  1 and kv⇤k2  1,

to ensure the robustness of the learned metric. Note that,
unlike many matrix factorization models, we do not regular-
ize the L

2-norm of v⇤ or u⇤. Regularizing L

2-norm creates
a gradient that pulls every object toward the origin. It is
not applicable here because the origin in our metric space
does not have any specific meaning.
Another regularization technique we use is covariance reg-

ularization recently proposed by Cogswell et al. [9] used to
reduce the correlation between activations in a deep neu-
ral network. We found the same principle is also useful in
de-correlating the dimensions in the learned metric. Let yn

denote an object’s latent vector where an object can be a
user or an item, and n indexes the object in a batch of size
N . The covariances between all pairs of dimensions i and j

form a matrix C:

C

ij

=
1
N

X

n

(yn
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� µ

i

)(yn

j

� µ

j

),

where µ

i

= 1

N
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. We define the loss L
c

to regularize
the covariances:

L
c

=
1
N

(kCk
f

� kdiag(C)k2
2

),

where k · k
f

is the Frobenius norm. As covariances can be
seen as a measure of linear redundancy between dimensions,
this loss essentially tries to prevent each dimension from
being redundant and encourages the whole system to more
e�ciently utilize the given space.

!"

!#

1 2

1

2

!"

!#

1 2

1

2

Matrix	Factorization Collaborative	Metric	Learning

User Item

$# $%

$"

$#
$%

$"

&# &"
$#
$"
$%

Figure 3: Example latent vector assignments for ma-
trix factorization and CML. The table on the right
shows user/item’s preference relationships.

3.5 Training Procedure
The complete objective function of the proposed model is

as follows:

min
✓,u⇤,v⇤

L
m

+ �

f

L
f

+ �

c

L
c

s.t. ku⇤k2  1 and kv⇤k2  1,

where �
f

and �

c

are hyperparameters that control the weight
of each loss term. We minimize this constrained objec-
tive function with Mini-Batch Stochastic Gradient Descent
(SGD) and control the learning rating using AdaGrad [10],
as suggested in [28]. Our training procedure is as follows:

1. Sample N positive pairs from S
2. For each pair, sample U negative items and approxi-

mate rank

d

(i, j) as described in Section 3.2

3. For each pair, keep the negative item k that maximizes
the hinge loss and form a mini-batch of size N .

4. Compute gradients and update parameters with a learn-
ing rate controlled by AdaGrad.

5. Censor the norm of u⇤ and v⇤ by y0 = y
max(kyk,1) .

6. Repeat this procedure until convergence.

3.6 Relation to Other Models
In this subsection, we describe the relation between CML

and other collaborative filtering models. At a high level, the
formulation of CML is similar to that of BPR or other pair-
wise matrix factorization models described in Section 2.3.1.
However, the fact that these matrix factorization models
rely on dot product, which does not satisfy the triangle in-
equality, leads to two important consequences illustrated in
the following.
Figure 3 shows three equally-sized groups of users labeled

as U

1

, U

2

and U

3

, where U

1

liked item v

1

, U

2

liked item
v

2

, and U

3

liked both item v

1

and v

2

. Figure 3 shows a
stable setting for a matrix factorization system. The setting
is stable in a way that the dot product between user/item
vectors= 2 when the user liked the item, otherwise their
dot-product= 0. However, an important observation is that
the dot-product between the item v

1

and item v

2

is 0 even
if U

3

like both of them. This violates the triangle inequality
because the positive relationships between the pairs (U

3

, v
1

)

Dot Product Euclidean Distance

→ Euclidean distance keeps triangular 

 inequality; dot product does not [5]    Optimizes distance
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SMORe is a modular GE toolkit for REC S’more is a campfire treat with layers

SMORe : Modular GE toolkit for REC
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Benefits of SMORe

Performance levelSampler

Mapper

for 
Recommendation

Optimizer

Modules contribute different 
levels of performance during 
different REC tasks

Model A
Model B

Model C
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Benefits of SMORe

Sampler

Mapper

for 
Recommendation

Optimizer

SMORe enables combining 
the most suitable modules 
for given REC task
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Benefits of SMORe

Sampler

Mapper

for 
Recommendation

Optimizer

SMORe enables combining 
the most suitable modules 
for given REC task
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Benefits of SMORe

Best THEN!

Best NOW!

As toolkit for research: 
1. Baseline comparison 
2. Ballpark approaches 
3. One module at a time

As framework for development: 
1. Reduces development time 
2. Raises performance limit 
3. Adapts to new tasks
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Q0. Recommendation (REC) and challenges 

Q1. Why graph embedding (GE) for REC 

Q2. SMORe modularization of GE and benefits 

Q3. Exemplar structural modeling for REC 

Q4. REC using SMORe

(Sean)

(Sean)

(Sean)

(CM)

(CM)



CLIP Lab, National Chengchi University CFDA Lab, Academia Sinica�65

Example Graph
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edge
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Vertex Structure

• Adjacency  
- vertices which share the same edge 

• Neighborhood  
- vertices which share similar connections 

• Community  
- vertices which share similar communities 

• Centrality  
- vertices which share similar properties
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Adjacency

user item

user-item	preference

vertices share the same edge are treated as similar pairs
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vector qi  R f, and each user u is associ-
ated with a vector pu  R f. For a given item 
i, the elements of qi measure the extent to 
which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of pu measure the extent of 
interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
qi

T pu, captures the interaction between user 
u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
rui, leading to the estimate 

 
r̂ui  

= qi
T pu. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
qi, pu  R f. After the recommender system 
completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (pu and qi), the system 
minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i

(rui  qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2)  (2) 

Here,  is the set of the (u,i) pairs for which rui is known 
(the training set). 

The system learns the model by fitting the previously 
observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant  controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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Lethal Weapon
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Ocean’s 11
Sense and
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The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 
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is sparse. However, they suffer from low accuracy since there
is essentially no knowledge learned about item characteristics
so as to produce accurate top-N recommendations.

The second category is model-based methods, particularly
latent factor models as they have achieved the state-of-the-art
performance on large-scale recommendation tasks. The key
idea of latent factor models is to factorize the user-item matrix
into (low-rank) user factors and item factors that represent
user tastes and item characteristics in a common latent space,
respectively. The prediction for a user on an item can be
calculated as the dot product of the corresponding user factor
and item factor. There are various Matrix Factorization (MF)-
based methods proposed in recent years for building such
latent factor models. Cremonesi et al [3] proposed a simple
Pure Singular-Value-Decomposition-based (PureSVD) matrix
factorization method, which describes users and items by the
most principle singular vectors of the user-item matrix. Pan
et al [4] and Hu et al [5] proposed a Weighted Regularized
Matrix Factorization (WRMF) method formulated as a regu-
larized Least-Squares (LS) problem, in which a weighting
matrix is used to differentiate the contributions from observed
purchase/rating activities and unobserved ones. Rennie [6]
and Srebro [7] proposed a Max-Margin Matrix Factorization
(MMMF) method, which requires a low-norm factorization of
the user-item matrix and allows unbounded dimensionality for
the latent space. This is implemented by minimizing the trace-
norm of the reconstructed user-item matrix from the factors.
Sindhwani et al [8] proposed a Weighted Non-Negative Matrix
Factorization (WNNMF) method, in which they enforce non-
negativity on the user and item factors so as to lend “part-
based” interpretability to the model. Hofmann [9] applied
Probabilistic Latent Semantic Analysis (PLSA) technique for
collaborative filtering, which has been shown equivalent to
non-negative matrix factorization. PLSA introduces a latent
space such that the co-occurrence of users and items (i.e.,
a certain user has purchased a certain item) can be rendered
conditionally independent. Koren [10] proposed an intersect-
ing approach between neighborhood-based method and MF. In
his approach, item similarity is learned simultaneously with a
matrix factorization so as to take advantages of both methods.

Top-N recommendation has also been formulated as a
ranking problem. Rendle et al [11] proposed a Bayesian
Personalized Ranking (BPR) criterion, which is the maximum
posterior estimator from a Bayesian analysis and measures the
difference between the rankings of user-purchased items and
the rest items. BPR can be well adopted for item knn method
(BPRkNN) and MF methods (BPRMF) as a general objective
function.

III. DEFINITIONS AND NOTATIONS

In this paper, the symbols u and t will be used to denote
the users and items, respectively. Individual users and items
will be denoted using different subscripts (i.e., ui, tj). The
set of all users and items in the system will be denoted by U
(|U| = m) and T (|T | = n), respectively. The entire set of
user-item purchases/ratings will be represented by a user-item
purchase/rating matrix A of size m ⇥ n, in which the (i, j)

entry (denoted by aij) is 1 or a positive value if user ui has
ever purchased/rated item tj , otherwise the entry is marked as
0. The i-th row of A represents the purchase/rating history of
user ui on all items T , and this row is denoted by aT

i . The
j-th column of A represents the purchase/rating history of all
users U on item tj and this column is denoted by aj .

In this paper, all vectors (e.g., aT
i and aj) are represented

by bold lower-case letters and all matrices (e.g., A) are
represented by upper-case letters. Row vectors are represented
by having the transpose supscriptT, otherwise by default they
are column vectors. A predicted/approximated value is denoted
by having a ⇠ head. We will use corresponding matrix/vector
notations instead of user/item purchase/rating profiles if no
ambiguity is raised.

IV. SPARSE LINEAR METHODS FOR Top-N
RECOMMENDATION

A. SLIM for Top-N Recommendation
In this paper, we propose a Sparse LInear Method (SLIM)

to do top-N recommendation. In the SLIM method, the recom-
mendation score on an un-purchased/-rated item tj of a user
ui is calculated as a sparse aggregation of items that have
been purchased/rated by ui, that is,

ãij = aT
i wj , (1)

where aij = 0 and wj is a sparse size-n column vector of
aggregation coefficients. Thus, the model utilized by SLIM can
be presented as

˜A = AW, (2)

where A is the binary user-item purchase matrix or the
user-item rating matrix, W is an n ⇥ n sparse matrix of
aggregation coefficients, whose j-th column corresponds to
wj as in Equation 1, and each row ˜aT

i of ˜A (˜aT
i = aT

i W )
represents the recommendation scores on all items for user
ui. Top-N recommendation for ui is done by sorting ui’s non-
purchased/-rated items based on their recommendation scores
in ˜aT

i in decreasing order and recommending the top-N items.

B. Learning W for SLIM

We view the purchase/rating activity of user ui on item tj in
A (i.e., aij) as the ground-truth item recommendation score.
Given a user-item purchase/rating matrix A of size m⇥n, we
learn the sparse n⇥n matrix W in Equation 2 as the minimizer
for the following regularized optimization problem:

minimize
W

1

2

kA�AWk2F +

�

2

kWk2F + �kWk1

subject to W � 0

diag(W ) = 0,

(3)

where kWk1 =

Pn
i=1

Pn
j=1 |wij | is the entry-wise `1-norm

of W , and k · kF is the matrix Frobenius norm. In Equa-
tion 3, AW is the estimated matrix of recommendation scores
(i.e., ˜A) by the sparse linear model as in Equation 2. The
first term 1

2kA � AWk2F (i.e., the residual sum of squares)
measures how well the linear model fits the training data, and
kWk2F and kWk21 are `F -norm and `1-norm regularization
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is sparse. However, they suffer from low accuracy since there
is essentially no knowledge learned about item characteristics
so as to produce accurate top-N recommendations.

The second category is model-based methods, particularly
latent factor models as they have achieved the state-of-the-art
performance on large-scale recommendation tasks. The key
idea of latent factor models is to factorize the user-item matrix
into (low-rank) user factors and item factors that represent
user tastes and item characteristics in a common latent space,
respectively. The prediction for a user on an item can be
calculated as the dot product of the corresponding user factor
and item factor. There are various Matrix Factorization (MF)-
based methods proposed in recent years for building such
latent factor models. Cremonesi et al [3] proposed a simple
Pure Singular-Value-Decomposition-based (PureSVD) matrix
factorization method, which describes users and items by the
most principle singular vectors of the user-item matrix. Pan
et al [4] and Hu et al [5] proposed a Weighted Regularized
Matrix Factorization (WRMF) method formulated as a regu-
larized Least-Squares (LS) problem, in which a weighting
matrix is used to differentiate the contributions from observed
purchase/rating activities and unobserved ones. Rennie [6]
and Srebro [7] proposed a Max-Margin Matrix Factorization
(MMMF) method, which requires a low-norm factorization of
the user-item matrix and allows unbounded dimensionality for
the latent space. This is implemented by minimizing the trace-
norm of the reconstructed user-item matrix from the factors.
Sindhwani et al [8] proposed a Weighted Non-Negative Matrix
Factorization (WNNMF) method, in which they enforce non-
negativity on the user and item factors so as to lend “part-
based” interpretability to the model. Hofmann [9] applied
Probabilistic Latent Semantic Analysis (PLSA) technique for
collaborative filtering, which has been shown equivalent to
non-negative matrix factorization. PLSA introduces a latent
space such that the co-occurrence of users and items (i.e.,
a certain user has purchased a certain item) can be rendered
conditionally independent. Koren [10] proposed an intersect-
ing approach between neighborhood-based method and MF. In
his approach, item similarity is learned simultaneously with a
matrix factorization so as to take advantages of both methods.

Top-N recommendation has also been formulated as a
ranking problem. Rendle et al [11] proposed a Bayesian
Personalized Ranking (BPR) criterion, which is the maximum
posterior estimator from a Bayesian analysis and measures the
difference between the rankings of user-purchased items and
the rest items. BPR can be well adopted for item knn method
(BPRkNN) and MF methods (BPRMF) as a general objective
function.

III. DEFINITIONS AND NOTATIONS

In this paper, the symbols u and t will be used to denote
the users and items, respectively. Individual users and items
will be denoted using different subscripts (i.e., ui, tj). The
set of all users and items in the system will be denoted by U
(|U| = m) and T (|T | = n), respectively. The entire set of
user-item purchases/ratings will be represented by a user-item
purchase/rating matrix A of size m ⇥ n, in which the (i, j)

entry (denoted by aij) is 1 or a positive value if user ui has
ever purchased/rated item tj , otherwise the entry is marked as
0. The i-th row of A represents the purchase/rating history of
user ui on all items T , and this row is denoted by aT

i . The
j-th column of A represents the purchase/rating history of all
users U on item tj and this column is denoted by aj .

In this paper, all vectors (e.g., aT
i and aj) are represented

by bold lower-case letters and all matrices (e.g., A) are
represented by upper-case letters. Row vectors are represented
by having the transpose supscriptT, otherwise by default they
are column vectors. A predicted/approximated value is denoted
by having a ⇠ head. We will use corresponding matrix/vector
notations instead of user/item purchase/rating profiles if no
ambiguity is raised.

IV. SPARSE LINEAR METHODS FOR Top-N
RECOMMENDATION

A. SLIM for Top-N Recommendation
In this paper, we propose a Sparse LInear Method (SLIM)

to do top-N recommendation. In the SLIM method, the recom-
mendation score on an un-purchased/-rated item tj of a user
ui is calculated as a sparse aggregation of items that have
been purchased/rated by ui, that is,

ãij = aT
i wj , (1)

where aij = 0 and wj is a sparse size-n column vector of
aggregation coefficients. Thus, the model utilized by SLIM can
be presented as

˜A = AW, (2)

where A is the binary user-item purchase matrix or the
user-item rating matrix, W is an n ⇥ n sparse matrix of
aggregation coefficients, whose j-th column corresponds to
wj as in Equation 1, and each row ˜aT

i of ˜A (˜aT
i = aT

i W )
represents the recommendation scores on all items for user
ui. Top-N recommendation for ui is done by sorting ui’s non-
purchased/-rated items based on their recommendation scores
in ˜aT

i in decreasing order and recommending the top-N items.

B. Learning W for SLIM

We view the purchase/rating activity of user ui on item tj in
A (i.e., aij) as the ground-truth item recommendation score.
Given a user-item purchase/rating matrix A of size m⇥n, we
learn the sparse n⇥n matrix W in Equation 2 as the minimizer
for the following regularized optimization problem:

minimize
W

1

2

kA�AWk2F +

�

2

kWk2F + �kWk1

subject to W � 0

diag(W ) = 0,

(3)

where kWk1 =

Pn
i=1

Pn
j=1 |wij | is the entry-wise `1-norm

of W , and k · kF is the matrix Frobenius norm. In Equa-
tion 3, AW is the estimated matrix of recommendation scores
(i.e., ˜A) by the sparse linear model as in Equation 2. The
first term 1

2kA � AWk2F (i.e., the residual sum of squares)
measures how well the linear model fits the training data, and
kWk2F and kWk21 are `F -norm and `1-norm regularization

A 
(fixed)

W	
(trainable)
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softmax function from Eq. (2) with 
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where ( ) 1/1 exp( )x xσ = + − , N  is a parameter that 

determines the number of negative examples to be 
drawn per a positive example. A negative word iw  is 

sampled from the unigram distribution raised to the 
3/4rd power. This distribution was found to 
significantly outperform the unigram distribution, 
empirically [8]. 

In order to overcome the imbalance between rare and 
frequent words the following subsampling procedure is 
proposed [8]: Given the input word sequence, we 
discard each word w  with a probability 

( | ) 1
( )

p discard w
f w

ρ
= −   where  ( )f w  is the 

frequency of the word w  and ρ  is a prescribed 

threshold. This procedure was reported to accelerate 
the learning process and to improve the representation 
of rare words significantly [8]. In our experiments, we 
observed the same improvements when applying 
subsampling. 

Finally, U  and V  are estimated by applying a 
stochastic optimization with respect to the objective in 
Eq. (1).  
 

3. Item2Vec – SGNS for item-based CF 

In the context of CF data, the items are given as user 
generated sets. Note that the information about the 
relation between a user and a set of items is not always 
available. For example, we might be given with a 
dataset that is generated from orders that a store 
received, without any information about the identity 
that sent the order. In other words, there are scenarios 
where multiple sets of items might belong to the same 
user, but this information is not provided. In Section 4, 
we present experimental results that show that our 
method handles these scenarios as well. 

We propose to apply SGNS to item-based CF. The 
application of SGNS to CF data is straightforward once 
we realize that a sequence of words is equivalent to a 
set or basket of items. Therefore, from now on, we will 
use the terms “word” and “item” interchangeably. 

By moving from sequences to sets, the spatial / time 
information is lost. We choose to discard this 
information, since in this paper, we assume a static 
environment where items that share the same set are 
considered similar, no matter in what order / time they 
were generated by the user. This assumption may not 

hold in other scenarios, but we keep the treatment of 
these scenarios out of scope of this paper. 

Since we ignore the spatial information, we treat 
each pair of items that share the same set as a positive 
example. This implies a window size that is determined 
from the set size. Specifically, for a given set of items, 
the objective from Eq. (1) is modified as follows: 
 

1

1
log ( | )

K K

j i

i j i

p w w
K = ≠
∑∑  

 
Another option is to keep the objective in Eq. (1) as is, 
and shuffle each set of items during runtime. In our 
experiments we observed that both options perform the 
same. 
The rest of the process remains identical to the 
algorithm described in Section 2. We name the 
described method “Item2Vec”.   

In this work, we used iu  as the final representation 

for the i -th item and the affinity between a pair of 
items is computed by the cosine similarity. 

 Other options are to use iv , the additive 

composition, i iu v+  or the concatenation 
T

T T

i iu v  . 

Note that the last two options sometimes produce 
superior representation.  
 

4. Experimental Results 

In this section, we provide an empirical evaluation of 
the Item2Vec method. We provide both qualitative and 
quantitative results depending whether a metadata 
about the items exists. As a baseline item-based CF 
algorithm we used item-item SVD. 
 

4.1 Datasets 

We evaluate the methods on two different types of 
datasets, both private. 

The first dataset is user-artist data that is retrieved 
from the Microsoft XBOX Music service. This dataset 
consist of 9M events. Each event consists of a user-
artist relation, which means the user played a song by 
the specific artist. The dataset contains 732K users and 
49K distinct artists.  

The second dataset contains physical goods orders 
from Microsoft Store. An order is given by a basket of 
items without any information about the user that made 
it. Therefore, the information in this dataset is weaker 
in the sense that we cannot bind between users and 
items. The dataset consist of 379K orders (that contains 
more than a single item) and 1706  distinct items. 
 

the given K items
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significantly in all the three datasets.
In summary, the contribution of this paper includes:

• The idea of query-based recommendation is proposed
in this paper, which is a hybrid research work of infor-
mation retrieval and general recommender system.

• We formulate the query-based recommendation as a
preference-embedding problem, and propose a method
to construct the preference network between users and
various, possibly heterogeneous, items.

• Extensive experiments have been conducted to verify
the e↵ectiveness of the proposed method.

2. QUERY-BASED RECOMMENDATIONS
In what follows, we briefly formalize the task of query-

based recommendation. The task is to recommend a list of
items I to a user u based on her previous preferences and an
input query q. The recommendation task can be formulated
as f✓(u, I, q), which can also be divided into two parts:

f✓(u, I, q) := ↵⇥ f✓(u, I)| {z }
the user preference

+(1� ↵)⇥ f✓(I, q)| {z }
the query intention

, (1)

where ↵ 2 [0, 1] is a parameter to weigh the results from the
user preference model and the query intention model. In the
literature, several models have been proposed to deal with
the user preference [2, 9]. For simplicity, we focus on only the
query intention part in this paper and set ↵ = 0. Our goal is
to show that the proposed embedding approach on the user
preference network can better incorporate information from
a user’s query intention into the learned latent representation
than a general matrix factorization model does.

From the perspective of query-based recommendation, we
attempt to regard various information as queries, so the
flexibility of incorporating the arbitrary types of informa-
tion into the recommendation model is a key point for our
development.

3. HPE: HETEROGENEOUS PREFERENCE
EMBEDDING

Network embedding technique is an approach to mapping
information networks into low-dimensional spaces, in which
each vertex is represented as a low-dimensional vector. Such
a low-dimensional vector is useful in a variety of applications
such as recommendation [10]. In the field of nature language
processing, there is a similar technique called word embed-
ding, the goal of which is also to learn the low-dimensional
representation of each word. There have been some well-
known studies of word embedding [4, 5, 6] in the field. In
this work, we attempt to apply the information embedding
techniques [7, 10] to deal with the recommendation prob-
lem, and propose a method called heterogeneous preference
embedding for the task of query-based recommendation for
arbitrary value of ↵ 2 [0, 1]. In the followings, we describe
the details of how to apply the embedding techniques for the
task.

3.1 Construction of User Preference Network
In a recommendation dataset, there are usually user-to-

other-entity pairs. The initial step is to convert these pairs
into a user-to-other-entity bipartite graph. Take music rec-
ommendation dataset as the example. As shown in Figure 1,

User

Track

Album

Artist

U1

T1

T2

T3

T4

T5

Ar1

U2

U3

Ar2

Ar3

Al1

Al2

Al3

Al4T6

U4

Figure 1: The user preference network. Suppose there are
totally four kinds of data attributes in the music listening
dataset. In the figure, the user U

4

may frequently listen to
the tracks T

5

and T
6

, the artist Ar
3

and the album Al
4

.

every data entity (i.e. a user, a track, an artist or an album)
is treated as an individual vertex in the graph, and they
are connected to each other by the observed user preference
(i.e. rating or listening times). This convention is applicable
to most kinds of recommendation dataset. There are some
useful properties for the modeling process:

• User Preference Edges: The weight of the edges is
determined by the preference strength. These weights
are user-specified and can be numerical or binary.

• Heterogeneous Graph: There is no limitation on
the utilized entity type. The proposed model learns
the representation of multiple types of entity in one
network so that it is able to compute the similarity
between any two entities.

• Bipartite Graph: It is a bipartite graph so that the
vertices in the graph can be divided into two disjoint
sets according to the connections. One of them con-
tains purely users and the other set contains all the
other entities. Modeling the direct connected pairs is
equivalent to modeling the user preference. This form
is suitable to adopt most existing collaborative filtering
(CF)-based models as well.

3.2 Edge Sampling via Weighted Random Walks
An intuitive way to obtain the neighbor vertices of a vertex

is to unfold all the second-order connections, but this greatly
increases the memory usage especially for the dataset con-
tained a large item pool. To resolve this, DeepWalk model
uses random walk strategy [7] to generate training pairs and
LINE model uses edge sampling [10] during the training
stage. They are two recent network embedding techniques.
From the optimization perspective, the general matrix fac-
torization models consider only the user-to-item pair type,
while this approach takes account of every entity-to-entity
pair type.
As Figure 2 demonstrates, we choose to adopt the edge

sampling to fast obtain the directly connected pairs and
then to use a weighted random walk to receive the indirectly
connected vertices. Instead of generating the walks uniformly,
the weighted random walk generates the walks according to
the weights of the observed edges. In our experiments, we
consider the proximity information within 2 steps for each
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Edge Sampling from
whole network
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(             ,             )

(             ,             )

(             ,             ) (             ,             )

context 
vertex(             ,             )

the training pairs

Figure 2: Edge sampling via weighted random walks for
training pairs. In our sampling scheme, the first sampling
pair is derived from the edge sampling over the whole network.
Then, the following training vertices are selected from the
weighted random walk on the preceding vertex.

vertex. Note that it is straightforward to enlarge the window
size to model higher-order proximity.

3.3 Query Intention Modeling via HPE
To embed the user preference into the vertices v, the

proposed HPE model updates the vertex representation �
according to the sampling proximities derived from the pref-
erence network. In other words, we treat those indirect
connected vertices as the contextual information of the cen-
ter vertex, which can be represented as follows:

Pr(vj |�(vi)) =
(
1 if vj 2 Context(vi)

0 otherwise
. (2)

Maximizing the above posterior probability is equivalent
to minimizing the negative log likelihood, so the objective
function of the second-order proximity can be represented as
follows:

O = �
X

(i,j)2S

wi,j log p(vj |�(vi)) + �
X

i

k�(vi)k2 , (3)

where S is a set of sampling pairs and w indicates the weight
of the edge. In practice, the observed edges are all posi-
tive information and thus falls into the one-class prediction
problem. We adopt the widely-used solution called negative
sampling to sample the additional user-to-other-entity pairs
from the unobserved data. This works well in point-wise
optimization functions [12].

In the heterogeneous preference embedding, a regularized
term is adopted to avoid the over-fitting problem. That is due
to the fact that we seek to preserve the inference ability that
can match the vertices containing the similar contexts, rather
than match those vertices containing exactly the same con-
text. In addition, we also adopt the asynchronous stochastic
gradient descent (ASGD) [8] algorithm to optimize Equa-
tion 3. The overall procedure is summarized in Algorithm 1.

4. EXPERIMENTS
Three music listening datasets are employed to assess the

performance of our proposed method. The first one is the
lastfm-dataset-1K dataset 1 , which contains the listening

1http://www.dtic.upf.edu/˜ocelma/

Algorithm 1: Heterogeneous Preference Embedding

Input: User Preference Network: G(V,E),
Walk Steps: w, Sampling Times: n

1 for v 2 V do
2 Initialize the representation: �(v) and context v

3 for i 2 {1, ..., n} do
4 (v

1

, v
2

) = EdgeSampling(G)
5 Update �(v

1

), context v
2

by minimizing Eqn.3
6 Update �(v

2

), context v
1

by minimizing Eqn.3
7 for v0 2 RandomWalk(v

2

, w � 1) do
8 Update �(v

1

), context v0 by minimizing Eqn.3

Output: Vertex representations �

Table 1: Datasets

Dataset #Users #Items #Logs
lastfm-1k 992 107,528 19,150,868
MSD 1,019,318 384,546 48,373,586
KKBOX 50,000 400,000 220,000,000

logs from the website of Last.fm. The second one, released
by EchoNest 2, is a music taste profile subset derived from
the o�cial user dataset of the Million Song Dataset (MSD).
The third one is a dataset with user listening logs provided
by KKBOX Inc., which is a regional leading music streaming
company. The third dataset covers user listening logs from
2014 to 2015. Table 1 gives the statistics of the three datasets.

For query-based recommendations, most users may only
care about the top recommendations. Therefore, we adopt
1) precision at k (P@k) and 2) mean Average Precision at
k (mAP@k) as the evaluation metrics, where k indicates
the number of the cut-o↵ recommended items. Calculating
the precision with a small k is equivalent to examining the
possible hit ratio of the users in top recommendations.
In the following experiments, we randomly select 70% of

the listening history for each user as the training logs, and put
the rest 30% logs in the test set for the o↵-line evaluation. In
the testing stage, we randomly select 5 queries from the test
logs of each user, and ask for matching the recommendations
to these selected query items.

Note that the ground truth of the query-based recommen-
dations shall depend on both the user and the user’s query
(even when we set ↵ = 0 in this work). Therefore the best
returned results are varied from person to person. Treating
the query as a context information, we assume that a user
may tend to listen to similar songs in a short period, thereby
considering the songs co-listened within the time period as
the ground truth. In the lastfm-1k and KKBOX datasets, we
consider the co-listen frequency that is higher than 3 as the
ground truth. In MSD, we do not further filter the ground
truth because it does not contain the primitive listening logs.
To verify the e↵ectiveness of the proposed method, we

compare it with other state-of-the-art approaches, including
one simple method (i.e. popularity-based), one CF-based
model (i.e. matrix factorization) and two embedding models
(i.e. DeepWalk and LINE-2nd). The similarities among the
entities are measured by cosine similarity. Below we briefly
describe these baseline methods:

MusicRecommendationDataset/lastfm-1K.html
2http://labrosa.ee.columbia.edu/millionsong/tasteprofile
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Figure 2: Edge sampling via weighted random walks for
training pairs. In our sampling scheme, the first sampling
pair is derived from the edge sampling over the whole network.
Then, the following training vertices are selected from the
weighted random walk on the preceding vertex.

vertex. Note that it is straightforward to enlarge the window
size to model higher-order proximity.

3.3 Query Intention Modeling via HPE
To embed the user preference into the vertices v, the

proposed HPE model updates the vertex representation �
according to the sampling proximities derived from the pref-
erence network. In other words, we treat those indirect
connected vertices as the contextual information of the cen-
ter vertex, which can be represented as follows:

Pr(vj |�(vi)) =
(
1 if vj 2 Context(vi)

0 otherwise
. (2)

Maximizing the above posterior probability is equivalent
to minimizing the negative log likelihood, so the objective
function of the second-order proximity can be represented as
follows:

O = �
X

(i,j)2S

wi,j log p(vj |�(vi)) + �
X

i

k�(vi)k2 , (3)

where S is a set of sampling pairs and w indicates the weight
of the edge. In practice, the observed edges are all posi-
tive information and thus falls into the one-class prediction
problem. We adopt the widely-used solution called negative
sampling to sample the additional user-to-other-entity pairs
from the unobserved data. This works well in point-wise
optimization functions [12].

In the heterogeneous preference embedding, a regularized
term is adopted to avoid the over-fitting problem. That is due
to the fact that we seek to preserve the inference ability that
can match the vertices containing the similar contexts, rather
than match those vertices containing exactly the same con-
text. In addition, we also adopt the asynchronous stochastic
gradient descent (ASGD) [8] algorithm to optimize Equa-
tion 3. The overall procedure is summarized in Algorithm 1.

4. EXPERIMENTS
Three music listening datasets are employed to assess the

performance of our proposed method. The first one is the
lastfm-dataset-1K dataset 1 , which contains the listening

1http://www.dtic.upf.edu/˜ocelma/

Algorithm 1: Heterogeneous Preference Embedding

Input: User Preference Network: G(V,E),
Walk Steps: w, Sampling Times: n

1 for v 2 V do
2 Initialize the representation: �(v) and context v

3 for i 2 {1, ..., n} do
4 (v

1

, v
2

) = EdgeSampling(G)
5 Update �(v

1

), context v
2

by minimizing Eqn.3
6 Update �(v

2

), context v
1

by minimizing Eqn.3
7 for v0 2 RandomWalk(v

2

, w � 1) do
8 Update �(v

1

), context v0 by minimizing Eqn.3

Output: Vertex representations �

Table 1: Datasets

Dataset #Users #Items #Logs
lastfm-1k 992 107,528 19,150,868
MSD 1,019,318 384,546 48,373,586
KKBOX 50,000 400,000 220,000,000

logs from the website of Last.fm. The second one, released
by EchoNest 2, is a music taste profile subset derived from
the o�cial user dataset of the Million Song Dataset (MSD).
The third one is a dataset with user listening logs provided
by KKBOX Inc., which is a regional leading music streaming
company. The third dataset covers user listening logs from
2014 to 2015. Table 1 gives the statistics of the three datasets.

For query-based recommendations, most users may only
care about the top recommendations. Therefore, we adopt
1) precision at k (P@k) and 2) mean Average Precision at
k (mAP@k) as the evaluation metrics, where k indicates
the number of the cut-o↵ recommended items. Calculating
the precision with a small k is equivalent to examining the
possible hit ratio of the users in top recommendations.
In the following experiments, we randomly select 70% of

the listening history for each user as the training logs, and put
the rest 30% logs in the test set for the o↵-line evaluation. In
the testing stage, we randomly select 5 queries from the test
logs of each user, and ask for matching the recommendations
to these selected query items.

Note that the ground truth of the query-based recommen-
dations shall depend on both the user and the user’s query
(even when we set ↵ = 0 in this work). Therefore the best
returned results are varied from person to person. Treating
the query as a context information, we assume that a user
may tend to listen to similar songs in a short period, thereby
considering the songs co-listened within the time period as
the ground truth. In the lastfm-1k and KKBOX datasets, we
consider the co-listen frequency that is higher than 3 as the
ground truth. In MSD, we do not further filter the ground
truth because it does not contain the primitive listening logs.
To verify the e↵ectiveness of the proposed method, we

compare it with other state-of-the-art approaches, including
one simple method (i.e. popularity-based), one CF-based
model (i.e. matrix factorization) and two embedding models
(i.e. DeepWalk and LINE-2nd). The similarities among the
entities are measured by cosine similarity. Below we briefly
describe these baseline methods:

MusicRecommendationDataset/lastfm-1K.html
2http://labrosa.ee.columbia.edu/millionsong/tasteprofile
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struc2vec KDD’17

Figure 2: (a) Barbell graph B(10, 10). (b) Roles identi�ed by RolX. Latent representations in R2 learned by (c) DeepWalk,
(d) node2vec and (e,f,g,h) struc2vec. Parameters used for all methods: number of walks per node: 20, walk length: 80, skip-
gram window size: 5. For node2vec: p = 1 and q = 2.

makes it impossible for nodes in K1 and K2 to appear in the same
context.

struct2vec, on the other hand, learns representations that prop-
erly separate the equivalent classes, placing structurally equivalent
nodes near one another in the latent space. Note that nodes of the
same color are tightly grouped together. Moreover, p1 and p10 are
placed close to representations for nodes in K1 and K2, as they are
the bridges. Finally, note that none of the three optimizations have
any signi�cant e�ect on the quality of the representations. In fact,
structurally equivalent nodes are even closer to one another in the
latent representations under OPT1.

Last, we apply RolX to the barbell graph (results in Figure 2(b)).
A total of six roles were identi�ed and some roles indeed precisely
captured structural equivalence (roles 1 and 3). However, struc-
turally equivalent nodes (in K1 and K2) were placed in three dif-
ferent roles (role 0, 2, and 5) while role 4 contains all remaining
nodes in the path. �us, although RolX does capture some notion

of structural equivalence when assigning roles to nodes, struct2vec
be�er identi�es and separates structural equivalence.

4.2 Karate network
�e Zachary’s Karate Club [25] is a network composed of 34 nodes
and 78 edges, where each node represents a club member and
edges denote if two members have interacted outside the club. In
this network, edges are commonly interpreted as indications of
friendship between members.

We construct a network composed of two copies G1 and G2 of
the Karate Club network, where each node � 2 V (G1) has a mirror
node u 2 V (G2). We also connect the two networks by adding
an edge between mirrored node pairs 1 and 37. Although this is
not necessary for our framework, DeepWalk and node2vec cannot
place in the same context nodes in di�erent connected components
of the graph. �us, we add the edge for a more fair comparison

Leonardo Filipe Rodrigues Ribeiro, Pedro H. P. Saverese, Daniel R. 
Figueiredo: struc2vec: Learning Node Representations from Structural 
Identity. KDD 2017: 385-394
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Figure 2: (a) Barbell graph B(10, 10). (b) Roles identi�ed by RolX. Latent representations in R2 learned by (c) DeepWalk,
(d) node2vec and (e,f,g,h) struc2vec. Parameters used for all methods: number of walks per node: 20, walk length: 80, skip-
gram window size: 5. For node2vec: p = 1 and q = 2.

makes it impossible for nodes in K1 and K2 to appear in the same
context.

struct2vec, on the other hand, learns representations that prop-
erly separate the equivalent classes, placing structurally equivalent
nodes near one another in the latent space. Note that nodes of the
same color are tightly grouped together. Moreover, p1 and p10 are
placed close to representations for nodes in K1 and K2, as they are
the bridges. Finally, note that none of the three optimizations have
any signi�cant e�ect on the quality of the representations. In fact,
structurally equivalent nodes are even closer to one another in the
latent representations under OPT1.

Last, we apply RolX to the barbell graph (results in Figure 2(b)).
A total of six roles were identi�ed and some roles indeed precisely
captured structural equivalence (roles 1 and 3). However, struc-
turally equivalent nodes (in K1 and K2) were placed in three dif-
ferent roles (role 0, 2, and 5) while role 4 contains all remaining
nodes in the path. �us, although RolX does capture some notion

of structural equivalence when assigning roles to nodes, struct2vec
be�er identi�es and separates structural equivalence.

4.2 Karate network
�e Zachary’s Karate Club [25] is a network composed of 34 nodes
and 78 edges, where each node represents a club member and
edges denote if two members have interacted outside the club. In
this network, edges are commonly interpreted as indications of
friendship between members.

We construct a network composed of two copies G1 and G2 of
the Karate Club network, where each node � 2 V (G1) has a mirror
node u 2 V (G2). We also connect the two networks by adding
an edge between mirrored node pairs 1 and 37. Although this is
not necessary for our framework, DeepWalk and node2vec cannot
place in the same context nodes in di�erent connected components
of the graph. �us, we add the edge for a more fair comparison

Leonardo Filipe Rodrigues Ribeiro, Pedro H. P. Saverese, Daniel R. 
Figueiredo: struc2vec: Learning Node Representations from Structural 
Identity. KDD 2017: 385-394
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Leonardo Filipe Rodrigues Ribeiro, Pedro H. P. Saverese, Daniel R. 
Figueiredo: struc2vec: Learning Node Representations from Structural 
Identity. KDD 2017: 385-394
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Edge Information

• Weight  
- reflects strength of interaction  

• Closeness  
- reflects order of interaction 

• Semantics  
- sample with grammar  

• Inductiveness  
- information diffuses through edges
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node2vec

edge weight guides the walk
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Aditya Grover, Jure Leskovec: node2vec: Scalable Feature Learning for Networks. 
KDD 2016: 855-864

KDD’16

we note that in order to ascertain structural equivalence, it is of-
ten sufficient to characterize the local neighborhoods accurately.
For example, structural equivalence based on network roles such as
bridges and hubs can be inferred just by observing the immediate
neighborhoods of each node. By restricting search to nearby nodes,
BFS achieves this characterization and obtains a microscopic view
of the neighborhood of every node. Additionally, in BFS, nodes in
the sampled neighborhoods tend to repeat many times. This is also
important as it reduces the variance in characterizing the distribu-
tion of 1-hop nodes with respect the source node. However, a very
small portion of the graph is explored for any given k.

The opposite is true for DFS which can explore larger parts of
the network as it can move further away from the source node u
(with sample size k being fixed). In DFS, the sampled nodes more
accurately reflect a macro-view of the neighborhood which is es-
sential in inferring communities based on homophily. However,
the issue with DFS is that it is important to not only infer which
node-to-node dependencies exist in a network, but also to charac-
terize the exact nature of these dependencies. This is hard given
we have a constrain on the sample size and a large neighborhood
to explore, resulting in high variance. Secondly, moving to much
greater depths leads to complex dependencies since a sampled node
may be far from the source and potentially less representative.

3.2 node2vec
Building on the above observations, we design a flexible neigh-

borhood sampling strategy which allows us to smoothly interpolate
between BFS and DFS. We achieve this by developing a flexible
biased random walk procedure that can explore neighborhoods in a
BFS as well as DFS fashion.

3.2.1 Random Walks

Formally, given a source node u, we simulate a random walk of
fixed length l. Let c

i

denote the ith node in the walk, starting with
c
0

= u. Nodes c
i

are generated by the following distribution:

P (c
i

= x | c
i�1

= v) =

(
⇡

vx

Z

if (v, x) 2 E

0 otherwise

where ⇡
vx

is the unnormalized transition probability between nodes
v and x, and Z is the normalizing constant.

3.2.2 Search bias ↵
The simplest way to bias our random walks would be to sample

the next node based on the static edge weights w
vx

i.e., ⇡
vx

= w
vx

.
(In case of unweighted graphs w

vx

= 1.) However, this does
not allow us to account for the network structure and guide our
search procedure to explore different types of network neighbor-
hoods. Additionally, unlike BFS and DFS which are extreme sam-
pling paradigms suited for structural equivalence and homophily
respectively, our random walks should accommodate for the fact
that these notions of equivalence are not competing or exclusive,
and real-world networks commonly exhibit a mixture of both.

We define a 2nd order random walk with two parameters p and q
which guide the walk: Consider a random walk that just traversed
edge (t, v) and now resides at node v (Figure 2). The walk now
needs to decide on the next step so it evaluates the transition prob-
abilities ⇡

vx

on edges (v, x) leading from v. We set the unnormal-
ized transition probability to ⇡

vx

= ↵
pq

(t, x) · w
vx

, where

↵
pq

(t, x) =

8
><

>:
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Figure 2: Illustration of the random walk procedure in node2vec .
The walk just transitioned from t to v and is now evaluating its next
step out of node v. Edge labels indicate search biases ↵.

and d
tx

denotes the shortest path distance between nodes t and x.
Note that d

tx

must be one of {0, 1, 2}, and hence, the two parame-
ters are necessary and sufficient to guide the walk.

Intuitively, parameters p and q control how fast the walk explores
and leaves the neighborhood of starting node u. In particular, the
parameters allow our search procedure to (approximately) interpo-
late between BFS and DFS and thereby reflect an affinity for dif-
ferent notions of node equivalences.

Return parameter, p. Parameter p controls the likelihood of im-
mediately revisiting a node in the walk. Setting it to a high value
(> max(q, 1)) ensures that we are less likely to sample an already-
visited node in the following two steps (unless the next node in
the walk had no other neighbor). This strategy encourages moder-
ate exploration and avoids 2-hop redundancy in sampling. On the
other hand, if p is low (< min(q, 1)), it would lead the walk to
backtrack a step (Figure 2) and this would keep the walk “local”
close to the starting node u.

In-out parameter, q. Parameter q allows the search to differentiate
between “inward” and “outward” nodes. Going back to Figure 2,
if q > 1, the random walk is biased towards nodes close to node t.
Such walks obtain a local view of the underlying graph with respect
to the start node in the walk and approximate BFS behavior in the
sense that our samples comprise of nodes within a small locality.

In contrast, if q < 1, the walk is more inclined to visit nodes
which are further away from the node t. Such behavior is reflec-
tive of DFS which encourages outward exploration. However, an
essential difference here is that we achieve DFS-like exploration
within the random walk framework. Hence, the sampled nodes are
not at strictly increasing distances from a given source node u, but
in turn, we benefit from tractable preprocessing and superior sam-
pling efficiency of random walks. Note that by setting ⇡

v,x

to be
a function of the preceeding node in the walk t, the random walks
are 2nd order Markovian.

Benefits of random walks. There are several benefits of random
walks over pure BFS/DFS approaches. Random walks are compu-
tationally efficient in terms of both space and time requirements.
The space complexity to store the immediate neighbors of every
node in the graph is O(|E|). For 2nd order random walks, it is
helpful to store the interconnections between the neighbors of ev-
ery node, which incurs a space complexity of O(a2|V |) where a
is the average degree of the graph and is usually small for real-
world networks. The other key advantage of random walks over
classic search-based sampling strategies is its time complexity. In
particular, by imposing graph connectivity in the sample genera-
tion process, random walks provide a convenient mechanism to in-
crease the effective sampling rate by reusing samples across differ-
ent source nodes. By simulating a random walk of length l > k we
can generate k samples for l � k nodes at once due to the Marko-
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we note that in order to ascertain structural equivalence, it is of-
ten sufficient to characterize the local neighborhoods accurately.
For example, structural equivalence based on network roles such as
bridges and hubs can be inferred just by observing the immediate
neighborhoods of each node. By restricting search to nearby nodes,
BFS achieves this characterization and obtains a microscopic view
of the neighborhood of every node. Additionally, in BFS, nodes in
the sampled neighborhoods tend to repeat many times. This is also
important as it reduces the variance in characterizing the distribu-
tion of 1-hop nodes with respect the source node. However, a very
small portion of the graph is explored for any given k.

The opposite is true for DFS which can explore larger parts of
the network as it can move further away from the source node u
(with sample size k being fixed). In DFS, the sampled nodes more
accurately reflect a macro-view of the neighborhood which is es-
sential in inferring communities based on homophily. However,
the issue with DFS is that it is important to not only infer which
node-to-node dependencies exist in a network, but also to charac-
terize the exact nature of these dependencies. This is hard given
we have a constrain on the sample size and a large neighborhood
to explore, resulting in high variance. Secondly, moving to much
greater depths leads to complex dependencies since a sampled node
may be far from the source and potentially less representative.

3.2 node2vec
Building on the above observations, we design a flexible neigh-

borhood sampling strategy which allows us to smoothly interpolate
between BFS and DFS. We achieve this by developing a flexible
biased random walk procedure that can explore neighborhoods in a
BFS as well as DFS fashion.

3.2.1 Random Walks

Formally, given a source node u, we simulate a random walk of
fixed length l. Let c

i

denote the ith node in the walk, starting with
c
0

= u. Nodes c
i

are generated by the following distribution:

P (c
i

= x | c
i�1

= v) =

(
⇡

vx

Z

if (v, x) 2 E

0 otherwise

where ⇡
vx

is the unnormalized transition probability between nodes
v and x, and Z is the normalizing constant.

3.2.2 Search bias ↵
The simplest way to bias our random walks would be to sample

the next node based on the static edge weights w
vx

i.e., ⇡
vx

= w
vx

.
(In case of unweighted graphs w

vx

= 1.) However, this does
not allow us to account for the network structure and guide our
search procedure to explore different types of network neighbor-
hoods. Additionally, unlike BFS and DFS which are extreme sam-
pling paradigms suited for structural equivalence and homophily
respectively, our random walks should accommodate for the fact
that these notions of equivalence are not competing or exclusive,
and real-world networks commonly exhibit a mixture of both.

We define a 2nd order random walk with two parameters p and q
which guide the walk: Consider a random walk that just traversed
edge (t, v) and now resides at node v (Figure 2). The walk now
needs to decide on the next step so it evaluates the transition prob-
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on edges (v, x) leading from v. We set the unnormal-
ized transition probability to ⇡
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Figure 2: Illustration of the random walk procedure in node2vec .
The walk just transitioned from t to v and is now evaluating its next
step out of node v. Edge labels indicate search biases ↵.

and d
tx

denotes the shortest path distance between nodes t and x.
Note that d

tx

must be one of {0, 1, 2}, and hence, the two parame-
ters are necessary and sufficient to guide the walk.

Intuitively, parameters p and q control how fast the walk explores
and leaves the neighborhood of starting node u. In particular, the
parameters allow our search procedure to (approximately) interpo-
late between BFS and DFS and thereby reflect an affinity for dif-
ferent notions of node equivalences.

Return parameter, p. Parameter p controls the likelihood of im-
mediately revisiting a node in the walk. Setting it to a high value
(> max(q, 1)) ensures that we are less likely to sample an already-
visited node in the following two steps (unless the next node in
the walk had no other neighbor). This strategy encourages moder-
ate exploration and avoids 2-hop redundancy in sampling. On the
other hand, if p is low (< min(q, 1)), it would lead the walk to
backtrack a step (Figure 2) and this would keep the walk “local”
close to the starting node u.

In-out parameter, q. Parameter q allows the search to differentiate
between “inward” and “outward” nodes. Going back to Figure 2,
if q > 1, the random walk is biased towards nodes close to node t.
Such walks obtain a local view of the underlying graph with respect
to the start node in the walk and approximate BFS behavior in the
sense that our samples comprise of nodes within a small locality.

In contrast, if q < 1, the walk is more inclined to visit nodes
which are further away from the node t. Such behavior is reflec-
tive of DFS which encourages outward exploration. However, an
essential difference here is that we achieve DFS-like exploration
within the random walk framework. Hence, the sampled nodes are
not at strictly increasing distances from a given source node u, but
in turn, we benefit from tractable preprocessing and superior sam-
pling efficiency of random walks. Note that by setting ⇡

v,x

to be
a function of the preceeding node in the walk t, the random walks
are 2nd order Markovian.

Benefits of random walks. There are several benefits of random
walks over pure BFS/DFS approaches. Random walks are compu-
tationally efficient in terms of both space and time requirements.
The space complexity to store the immediate neighbors of every
node in the graph is O(|E|). For 2nd order random walks, it is
helpful to store the interconnections between the neighbors of ev-
ery node, which incurs a space complexity of O(a2|V |) where a
is the average degree of the graph and is usually small for real-
world networks. The other key advantage of random walks over
classic search-based sampling strategies is its time complexity. In
particular, by imposing graph connectivity in the sample genera-
tion process, random walks provide a convenient mechanism to in-
crease the effective sampling rate by reusing samples across differ-
ent source nodes. By simulating a random walk of length l > k we
can generate k samples for l � k nodes at once due to the Marko-
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ABSTRACT
Recommender systems are vital ingredients for many e-commerce
services. In the literature, two of the most popular approaches
are based on factorization and graph-based models; the former ap-
proach captures user preferences by factorizing the observed direct
interactions between users and items, and the latter extracts indirect
preferences from the graphs constructed by user-item interactions.
In this paper we present HOP-Rec, a uni�ed and e�cient method
that incorporates the two approaches. The proposed method in-
volves random sur�ng on a graph to harvest high-order information
among neighborhood items for each user. Instead of factorizing a
transition matrix, our method introduces a con�dence weighting
parameter to simulate all high-order information simultaneously,
for which we maintain a sparse user-item interaction matrix and
enrich the matrix for each user using random walks. Experimental
results show that our approach signi�cantly outperforms the state
of the art on a range of large-scale real-world datasets.

KEYWORDS
collaborative �ltering; top-N recommendation; random walks; bi-
partite graph; matrix factorization; implicit feedback
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1 INTRODUCTION
Recommender systems are ubiquitous in modern times and have
been applied to services for recommending items such as music,
books, and movies. Real-world recommender systems include a
number of user-item interactions that facilitate recommendations,
including playing times, likes, sharing, and tags.
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Figure 1: High-order proximity between users and items
within observed interactions

Collaborative �ltering (CF) is commonly used to leverage this
interaction data for recommendation, because it yields reasonable
performance among diverse recommendation strategies [15] and
because it does not require domain knowledge. There are two
mainstream CF models: latent factor models and graph-based mod-
els [13]. Latent factor models discover shared latent factors given
interactions between users and items by decomposing the user-item
matrix; matrix factorization (MF) [8] is the most representative of
this type of approaches. Moreover, recent literature has focused
more on optimizing item ranks from implicit data than on predict-
ing explicit item scores [14, 17, 19]. Most such methods assume
that unobserved items are of less interest to users; thus, these meth-
ods are designed to discriminate observed (positive) items from
unobserved (negative) items. Graph-based models, in turn, explore
the high-order proximity between vertices inherent in a simple
user-item bipartite graph constructed by users, items, and their in-
teractions [1, 5, 12, 16]. To some extent, such graph-based methods
relax the assumptionmade by factorization-based models since they
explicitly model high-order proximity between users and items in
the user-item-interaction bipartite graph.
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these factorization and graph models, we build HOP-Rec, a united
framework that (1) captures high-order preference information in
a given user-item interaction matrix, and (2) scales to large-scale
real-world datasets by using random sur�ng on the corresponding
interaction graph. The objective of HOP-Rec is de�ned as

LHOP =
X

1kK
u, (i,i0)

graph model
z         }|         {
C (k ) E i⇠Pku

i0⇠PN

factorization modelz                 }|                 {f
F
⇣
�

|
u �i0 ,�

|
u �i
⌘g
+�� k�k22 , (3)

where P

k
u (·) denotes the k-order probability distribution for an

item sampled from the walk sequence Su (see De�nition 2), PN
denotes a uniform distribution by which an item is sampled from
the set of all items, and K denotes the maximum order modeled
in our method. The main idea behind the proposed method is the
approximation of high-order probabilistic matrix factorization by
conducting random walk (RW) with a decay factor for con�dence
weighting C (k ), where 0 < C (k )  1. Note that instead of factoriz-
ing the matrix directly by matrix operations, which is not feasible
for large-scale datasets, RW approximation has been proved e�-
cient and accurate [3]. By doing so, we not only smooth the strict
boundary between observed and unobserved items by introduc-
ing high-order preference information, but also make our method
scalable to large-scale real-world datasets.

Speci�cally, we �rst introduce RW to explore the interaction
graph G with respect to each user u; for a given walk sequence
starting from u: Su = (u, i1,u1, . . . ,uk�1, ik , . . .), item ik with or-
der k that user u potentially prefers (i.e., user u’s k-th-neighbor
item) is sampled. In addition, as the degree of users U and items
I are usually power-law distributed in real-world datasets, most
of the sampled paths are with low degree users and items when
we apply uniform sampling. To take this into consideration, we
utilize degree sampling in our RW procedure; that is, for each step
in RW sampling, we sample users and items with probabilities
/ de�(u),de�(i ), respectively. Therefore, for x 2 U and � 2 I (or
x 2 I and � 2 U ), the probability of sampling a k-th order neighbor
vertex � for x can be derived as

p

k
x (�) =

8>>>>>><>>>>>>:

ax�de� (� )P
�0 ax�0de� (�0)

if k = 1 and x 2 U ,
a�xde� (� )P
�0 a�0xde� (�0)

if k = 1 and x 2 I ,
p

1
x (� )p

k�1
� (� )p1� (�) if k > 1,

(4)

where de�(x ) stands for the degree of x , and � (�) denotes the next
node of x (the previous node of �) in the walk. Note that as G is a
user-item bipartite graph, if x 2 U (x 2 I ), then �,�0 2 I (�,�0 2 U ,
respectively) for k = 1, and the absolute transition probability
from x to � can be approximated by RW with various paths from
x to �, which simpli�es the cumulative process of counting all the
probabilities of intermediate nodes � , � .

Additionally, the con�dence weighting parameter C (k ) is in-
troduced to discriminate the strength between di�erent orders of
proximity. Inspired from the studies in [5, 12], we weight the k-
order proximity by a decay factor C (k ) = 1/k , and we update Eq. (3)
with di�erent orders of neighborhood items (i.e., k = 1, 2, . . . ,K)
simultaneously. With this perspective, we enrich the originally
sparse graph by inferring high-order proximity from user-item
interactions.

Finally, the ranking objective function is composed with an indi-
cator function and a pairwise logistic loss, and we thus de�ne F in
Eq. (3) as

F (�|u �i0 ,�
|
u �i ) = 1{� |u �i0�� |u �i>�k } log

f
�

⇣
�

|
u �i0 � �|u �i

⌘g
, (5)

where 1B denotes the indicator function for condition B and �k is
an order-aware margin set to �/k . Note that item i

0 is uniformly
sampled from the set of all items as we assume a simpli�ed uni-
form distribution PN for less preferred items; this assumption is
reasonable since the preferred (observed) items are usually far out-
numbered by less preferred (unobserved) items for each user in
many real-world scenarios.

The objective in Eq. (3) is minimized using asynchronous sto-
chastic gradient descent (ASGD) [11].

3 EXPERIMENTS
3.1 Datasets and Preprocessing
To examine the capability and scalability of HOP-Rec, we conduct
experiments on four publicly available datasets that vary in terms
of domain, size, and sparsity, as shown in Table 1. For each of the
datasets, we discard those users and items with fewer than 5 associ-
ated interactions. In addition, we preprocess the interaction records
for each dataset to simulate implicit binary feedback from users:
1) for the Amazon-book and MovieLens datasets, which contain
explicit rating records, we transform ratings higher than 4 to 1 and
the rest to 0 [10]; 2) for the CiteUlike dataset, no transformation is
conducted as it is a binary preference dataset.

Table 1: Datasets
Dataset CiteUlikea MovieLens-

1Mb
MovieLens-

20Mb
Amazon-
Bookc

Users ( |U |) 3,527 6,034 136,674 449,475
Items ( |I |) 6,339 3,125 13,680 292,65
Feedback ( |E |) 77,546 574,376 9,977,451 6,444,944
Density 0.347% 3.046% 0.534% 0.005%
a http://www.wanghao.in/data/ctrsr_datasets.rar
b https://grouplens.org/datasets/movielens
c http://jmcauley.ucsd.edu/data/amazon

3.2 Baseline Methods
Matrix Factorization (MF) [8]. MF is a well developed and

commonly used technique for user-item recommendation. In the
experiments, we use the implicit library,3 which implements MF
with an alternating least-square learning method [7].

Bayesian Personalized Ranking (BPR) [14]. BPR extends
the pointwise method, MF, by incorporating pairwise ranking loss
for personalized recommendations.

Weighted Approximate-Rank Pairwise (WARP) loss [17,
18]. WARP is an approximated approach to estimating the rank
function e�ciently, the main idea of which is to weigh pairwise
violations depending on their position in the ranked list.

3https://github.com/benfred/implicit
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cient and accurate [3]. By doing so, we not only smooth the strict
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ing high-order preference information, but also make our method
scalable to large-scale real-world datasets.
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graph G with respect to each user u; for a given walk sequence
starting from u: Su = (u, i1,u1, . . . ,uk�1, ik , . . .), item ik with or-
der k that user u potentially prefers (i.e., user u’s k-th-neighbor
item) is sampled. In addition, as the degree of users U and items
I are usually power-law distributed in real-world datasets, most
of the sampled paths are with low degree users and items when
we apply uniform sampling. To take this into consideration, we
utilize degree sampling in our RW procedure; that is, for each step
in RW sampling, we sample users and items with probabilities
/ de�(u),de�(i ), respectively. Therefore, for x 2 U and � 2 I (or
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vertex � for x can be derived as
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where de�(x ) stands for the degree of x , and � (�) denotes the next
node of x (the previous node of �) in the walk. Note that as G is a
user-item bipartite graph, if x 2 U (x 2 I ), then �,�0 2 I (�,�0 2 U ,
respectively) for k = 1, and the absolute transition probability
from x to � can be approximated by RW with various paths from
x to �, which simpli�es the cumulative process of counting all the
probabilities of intermediate nodes � , � .

Additionally, the con�dence weighting parameter C (k ) is in-
troduced to discriminate the strength between di�erent orders of
proximity. Inspired from the studies in [5, 12], we weight the k-
order proximity by a decay factor C (k ) = 1/k , and we update Eq. (3)
with di�erent orders of neighborhood items (i.e., k = 1, 2, . . . ,K)
simultaneously. With this perspective, we enrich the originally
sparse graph by inferring high-order proximity from user-item
interactions.

Finally, the ranking objective function is composed with an indi-
cator function and a pairwise logistic loss, and we thus de�ne F in
Eq. (3) as
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where 1B denotes the indicator function for condition B and �k is
an order-aware margin set to �/k . Note that item i

0 is uniformly
sampled from the set of all items as we assume a simpli�ed uni-
form distribution PN for less preferred items; this assumption is
reasonable since the preferred (observed) items are usually far out-
numbered by less preferred (unobserved) items for each user in
many real-world scenarios.

The objective in Eq. (3) is minimized using asynchronous sto-
chastic gradient descent (ASGD) [11].

3 EXPERIMENTS
3.1 Datasets and Preprocessing
To examine the capability and scalability of HOP-Rec, we conduct
experiments on four publicly available datasets that vary in terms
of domain, size, and sparsity, as shown in Table 1. For each of the
datasets, we discard those users and items with fewer than 5 associ-
ated interactions. In addition, we preprocess the interaction records
for each dataset to simulate implicit binary feedback from users:
1) for the Amazon-book and MovieLens datasets, which contain
explicit rating records, we transform ratings higher than 4 to 1 and
the rest to 0 [10]; 2) for the CiteUlike dataset, no transformation is
conducted as it is a binary preference dataset.

Table 1: Datasets
Dataset CiteUlikea MovieLens-

1Mb
MovieLens-

20Mb
Amazon-
Bookc

Users ( |U |) 3,527 6,034 136,674 449,475
Items ( |I |) 6,339 3,125 13,680 292,65
Feedback ( |E |) 77,546 574,376 9,977,451 6,444,944
Density 0.347% 3.046% 0.534% 0.005%
a http://www.wanghao.in/data/ctrsr_datasets.rar
b https://grouplens.org/datasets/movielens
c http://jmcauley.ucsd.edu/data/amazon

3.2 Baseline Methods
Matrix Factorization (MF) [8]. MF is a well developed and

commonly used technique for user-item recommendation. In the
experiments, we use the implicit library,3 which implements MF
with an alternating least-square learning method [7].

Bayesian Personalized Ranking (BPR) [14]. BPR extends
the pointwise method, MF, by incorporating pairwise ranking loss
for personalized recommendations.

Weighted Approximate-Rank Pairwise (WARP) loss [17,
18]. WARP is an approximated approach to estimating the rank
function e�ciently, the main idea of which is to weigh pairwise
violations depending on their position in the ranked list.

3https://github.com/benfred/implicit
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(c) Skip-gram in metapath2vec++

Figure 2: An illustrative example of a heterogeneous academic network and skip-gram architectures of metapath2vec and
metapath2vec++ for embedding this network. (a). Yellow do�ed lines denote coauthor relationships and red do�ed lines denote citation
relationships. (b)�e skip-gram architecture used in metapath2vec when predicting for a4, which is the same with the one in node2vec if
node types are ignored. |V |=12 denotes the number of nodes in the heterogeneous academic network in (a) and a4’s neighborhood is set to
include CMU, a2, a3, a5, p2, p3, ACL, & KDD, making k = 8. (c) �e heterogeneous skip-gram used in metapath2vec++. Instead of one set of
multinomial distributions for all types of neighborhood nodes in the output layer, it speci�es one set of multinomial distributions for each
type of nodes in a4’s neighborhood. Vt denotes one speci�c t-type nodes and V = VV [VA [VO [VP . kt speci�es the size of a particular
type of one’s neighborhood and k = kV + kA + kO + kP .

Here we show how to use meta-paths to guide heterogeneous
random walkers. Given a heterogeneous networkG = (V ,E,T ) and

a meta-path scheme P: V1 R1��! V2
R2��! · · ·Vt Rt��! Vt+1 · · · Rl�1����! Vl ,

the transition probability at step i is de�ned as follows:

p (�i+1 |�it ,P) =
8>>><>>>:

1
|Nt+1 (� it ) | (�i+1,�it ) 2 E, � (�i+1) = t+1

0 (�i+1,�it ) 2 E, � (�i+1) , t+1
0 (�i+1,�it ) < E

(3)

where �it 2 Vt and Nt+1 (�it ) denote theVt+1 type of neighborhood
of node �it . In other words, �i+1 2 Vt+1, that is, the �ow of the
walker is conditioned on the pre-de�ned meta-path P. In addition,
meta-paths are commonly used in a symmetric way, that is, its �rst
node typeV1 is the same with the last oneVl [25, 26, 28], facilitating
its recursive guidance for random walkers, i.e.,

p (�i+1 |�it ) = p (�i+1 |�i1), if t = l (4)

�e meta-path-based random walk strategy ensures that the
semantic relationships between di�erent types of nodes can be
properly incorporated into skip-gram. For example, in a traditional
random walk procedure, in Figure 2(a), the next step of a walker
on node a4 transitioned from node CMU can be all types of nodes
surrounding it—a2, a3, a5, p2, p3, and CMU. However, under the
meta-path scheme ‘OAPVPAO’, for example, the walker is biased
towards paper nodes (P) given its previous step on an organization
node CMU (O), following the semantics of this path.

3.3 metapath2vec++
metapath2vec distinguishes the context nodes of node� conditioned
on their types when constructing its neighborhood function Nt (� )
in Eq. 2. However, it ignores the node type information in so�max.

In other words, in order to infer the speci�c type of context ct in
Nt (� ) given a node � , metapath2vec actually encourages all types
of negative samples, including nodes of the same type t as well as
the other types in the heterogeneous network.
Heterogeneous negative sampling. We further propose the
metapath2vec++ framework, in which the so�max function is nor-
malized with respect to the node type of the context ct . Speci�cally,
p (ct |� ;� ) is adjusted to the speci�c node type t , that is,

p (ct |� ;� ) = eXct ·X�
P
ut 2Vt eXut ·X�

(5)

where Vt is the node set of type t in the network. In doing so,
metapath2vec++ speci�es one set of multinomial distributions for
each type of neighborhood in the output layer of the skip-gram
model. Recall that in metapath2vec and node2vec / DeepWalk, the
dimension of the output multinomial distributions is equal to the
number of nodes in the network. However, in metapath2vec++’s
skip-gram, the multinomial distribution dimension for type t nodes
is determined by the number of t-type nodes. A clear illustration
can be seen in Figure 2(c). For example, given the target node a4 in
the input layer, metapath2vec++ outputs four sets of multinomial
distributions, each corresponding to one type of neighbors—venues
V , authors A, organizations O , and papers P .

Inspired by PTE [29], the sampling distribution is also speci�ed
by the node type of the neighbor ct that is targeted to predict, i.e.,
Pt (·). �erefore, we have the following objective:

O (X) = log� (Xct · X� ) +
MX

m=1
Eumt ⇠Pt (ut )[log� (�Xumt · X� )]

(6)
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P–V), a�liation (O–A) relationships. By considering a heteroge-
neous network as input, we formalize the problem of heterogeneous
network representation learning as follows.

P������ 1. Heterogeneous Network Representation Learn-
ing: Given a heterogeneous network G, the task is to learn the d-
dimensional latent representations X 2 R |V |⇥d , d ⌧ |V | that are
able to capture the structural and semantic relations among them.

�e output of the problem is the low-dimensional matrix X, with
the �th row—a d-dimensional vector X�—corresponding to the
representation of node � . Notice that, although there are di�erent
types of nodes in V , their representations are mapped into the
same latent space. �e learned node representations can bene�t
various heterogeneous network mining tasks. For example, the
embedding vector of each node can be used as the feature input of
node classi�cation, clustering, and similarity search tasks.

�e main challenge of this problem comes from the network
heterogeneity, wherein it is di�cult to directly apply homogeneous
language and network embeddingmethods. �e premise of network
embedding models is to preserve the proximity between a node
and its neighborhood (context) [8, 22, 30]. In a heterogeneous envi-
ronment, how do we de�ne and model this ‘node–neighborhood’
concept? Furthermore, how do we optimize the embedding models
that e�ectively maintain the structures and semantics of multiple
types of nodes and relations?

3 THE METAPATH2VEC FRAMEWORK
We present a general framework, metapath2vec, which is capable
of learning desirable node representations in heterogeneous net-
works. �e objective of metapath2vec is to maximize the network
probability in consideration of multiple types of nodes and edges.

3.1 Homogeneous Network Embedding
We, �rst, brie�y introduce the word2vec model and its application
to homogeneous network embedding tasks. Given a text corpus,
Mikolov et al. proposed word2vec to learn the distributed represen-
tations of words in a corpus [17, 18]. Inspired by it, DeepWalk [22]
and node2vec [8] aim to map the word-context concept in a text
corpus into a network. Both methods leverage random walks to
achieve this and utilize the skip-gram model to learn the repre-
sentation of a node that facilitates the prediction of its structural
context—local neighborhoods—in a homogeneous network. Usu-
ally, given a network G = (V ,E), the objective is to maximize the
network probability in terms of local structures [8, 18, 22], that is:

argmax
�

Y

� 2V

Y

c 2N (� )
p (c |� ;� ) (1)

where N (� ) is the neighborhood of node� in the networkG , which
can be de�ned in di�erent ways such as �’s one-hop neighbors,
and p (c |� ;� ) de�nes the conditional probability of having a context
node c given a node � .

3.2 Heterogeneous Network Embedding:
metapath2vec

To model the heterogeneous neighborhood of a node,metapath2vec
introduces the heterogeneous skip-gram model. To incorporate

the heterogeneous network structures into skip-gram, we propose
meta-path-based random walks in heterogeneous networks.
Heterogeneous Skip-Gram. In metapath2vec, we enable skip-
gram to learn e�ective node representations for a heterogeneous
networkG = (V ,E,T ) with |TV | > 1 by maximizing the probability
of having the heterogeneous context Nt (� ), t 2 TV given a node � :

argmax
�

X

� 2V

X

t 2TV

X

ct 2Nt (� )
logp (ct |� ;� ) (2)

where Nt (� ) denotes �’s neighborhood with the t th type of nodes
and p (ct |� ;� ) is commonly de�ned as a so�max function [3, 7, 18,
24], that is: p (ct |�;� ) = eXct ·X�P

u2V eXu ·X� , where X� is the �th row of
X, representing the embedding vector for node � . For illustration,
consider the academic network in Figure 2(a), the neighborhood
of one author node a4 can be structurally close to other authors
(e.g., a2, a3 & a5), venues (e.g., ACL & KDD), organizations (CMU
& MIT), as well as papers (e.g., p2 & p3).

To achieve e�cient optimization, Mikolov et al. introduced neg-
ative sampling [18], in which a relatively small set of words (nodes)
are sampled from the corpus (network) for the construction of so�-
max. We leverage the same technique for metapath2vec. Given a
negative sample sizeM , Eq. 2 is updated as follows: log� (Xct ·X� )+PM
m=1 Eum⇠P (u )[log� (�Xum ·X� )], where � (x ) = 1

1+e�x and P (u)
is the pre-de�ned distribution from which a negative node um is
drew from forM times. metapath2vec builds the the node frequency
distribution by viewing di�erent types of nodes homogeneously
and draw (negative) nodes regardless of their types.
Meta-Path-Based Random Walks. How to e�ectively trans-
form the structure of a network into skip-gram? In DeepWalk [22]
and node2vec [8], this is achieved by incorporating the node paths
traversed by randomwalkers over a network into the neighborhood
function.

Naturally, we can put random walkers in a heterogeneous network
to generate paths of multiple types of nodes. At step i , the transition
probability p (�i+1 |�i ) is denoted as the normalized probability
distributed over the neighbors of �i by ignoring their node types.
�e generated paths can be then used as the input of node2vec
and DeepWalk. However, Sun et al. demonstrated that heterogeneous
random walks are biased to highly visible types of nodes—those with
a dominant number of paths—and concentrated nodes—those with a
governing percentage of paths pointing to a small set of nodes [26].

In light of these issues, we designmeta-path-based randomwalks
to generate paths that are able to capture both the semantic and
structural correlations between di�erent types of nodes, facilitat-
ing the transformation of heterogeneous network structures into
metapath2vec’s skip-gram.

Formally, a meta-path scheme P is de�ned as a path that is

denoted in the form of V1
R1��! V2

R2��! · · ·Vt Rt��! Vt+1 · · · Rl�1����! Vl ,
wherein R = R1 � R2 � · · · � Rl�1 de�nes the composite relations
between node types V1 and Vl [25]. Take Figure 2(a) as an example,
a meta-path “APA” represents the coauthor relationships on a paper
(P) between two authors (A), and “APVPA” represents two authors
(A) publish papers (P) in the same venue (V). Previous work has
shown that many data mining tasks in heterogeneous information
networks can bene�t from the modeling of meta-paths [6, 25, 27].
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(c) Skip-gram in metapath2vec++

Figure 2: An illustrative example of a heterogeneous academic network and skip-gram architectures of metapath2vec and
metapath2vec++ for embedding this network. (a). Yellow do�ed lines denote coauthor relationships and red do�ed lines denote citation
relationships. (b)�e skip-gram architecture used in metapath2vec when predicting for a4, which is the same with the one in node2vec if
node types are ignored. |V |=12 denotes the number of nodes in the heterogeneous academic network in (a) and a4’s neighborhood is set to
include CMU, a2, a3, a5, p2, p3, ACL, & KDD, making k = 8. (c) �e heterogeneous skip-gram used in metapath2vec++. Instead of one set of
multinomial distributions for all types of neighborhood nodes in the output layer, it speci�es one set of multinomial distributions for each
type of nodes in a4’s neighborhood. Vt denotes one speci�c t-type nodes and V = VV [VA [VO [VP . kt speci�es the size of a particular
type of one’s neighborhood and k = kV + kA + kO + kP .

Here we show how to use meta-paths to guide heterogeneous
random walkers. Given a heterogeneous networkG = (V ,E,T ) and

a meta-path scheme P: V1 R1��! V2
R2��! · · ·Vt Rt��! Vt+1 · · · Rl�1����! Vl ,

the transition probability at step i is de�ned as follows:

p (�i+1 |�it ,P) =
8>>><>>>:

1
|Nt+1 (� it ) | (�i+1,�it ) 2 E, � (�i+1) = t+1

0 (�i+1,�it ) 2 E, � (�i+1) , t+1
0 (�i+1,�it ) < E

(3)

where �it 2 Vt and Nt+1 (�it ) denote theVt+1 type of neighborhood
of node �it . In other words, �i+1 2 Vt+1, that is, the �ow of the
walker is conditioned on the pre-de�ned meta-path P. In addition,
meta-paths are commonly used in a symmetric way, that is, its �rst
node typeV1 is the same with the last oneVl [25, 26, 28], facilitating
its recursive guidance for random walkers, i.e.,

p (�i+1 |�it ) = p (�i+1 |�i1), if t = l (4)

�e meta-path-based random walk strategy ensures that the
semantic relationships between di�erent types of nodes can be
properly incorporated into skip-gram. For example, in a traditional
random walk procedure, in Figure 2(a), the next step of a walker
on node a4 transitioned from node CMU can be all types of nodes
surrounding it—a2, a3, a5, p2, p3, and CMU. However, under the
meta-path scheme ‘OAPVPAO’, for example, the walker is biased
towards paper nodes (P) given its previous step on an organization
node CMU (O), following the semantics of this path.

3.3 metapath2vec++
metapath2vec distinguishes the context nodes of node� conditioned
on their types when constructing its neighborhood function Nt (� )
in Eq. 2. However, it ignores the node type information in so�max.

In other words, in order to infer the speci�c type of context ct in
Nt (� ) given a node � , metapath2vec actually encourages all types
of negative samples, including nodes of the same type t as well as
the other types in the heterogeneous network.
Heterogeneous negative sampling. We further propose the
metapath2vec++ framework, in which the so�max function is nor-
malized with respect to the node type of the context ct . Speci�cally,
p (ct |� ;� ) is adjusted to the speci�c node type t , that is,

p (ct |� ;� ) = eXct ·X�
P
ut 2Vt eXut ·X�

(5)

where Vt is the node set of type t in the network. In doing so,
metapath2vec++ speci�es one set of multinomial distributions for
each type of neighborhood in the output layer of the skip-gram
model. Recall that in metapath2vec and node2vec / DeepWalk, the
dimension of the output multinomial distributions is equal to the
number of nodes in the network. However, in metapath2vec++’s
skip-gram, the multinomial distribution dimension for type t nodes
is determined by the number of t-type nodes. A clear illustration
can be seen in Figure 2(c). For example, given the target node a4 in
the input layer, metapath2vec++ outputs four sets of multinomial
distributions, each corresponding to one type of neighbors—venues
V , authors A, organizations O , and papers P .

Inspired by PTE [29], the sampling distribution is also speci�ed
by the node type of the neighbor ct that is targeted to predict, i.e.,
Pt (·). �erefore, we have the following objective:

O (X) = log� (Xct · X� ) +
MX

m=1
Eumt ⇠Pt (ut )[log� (�Xumt · X� )]

(6)
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ABSTRACT
Modeling the complex interactions between users and items as well
as amongst items themselves is at the core of designing success-
ful recommender systems. One classical setting is predicting users’
personalized sequential behavior (or ‘next-item’ recommendation),
where the challenges mainly lie in modeling ‘third-order’ interac-
tions between a user, her previously visited item(s), and the next item
to consume. Existing methods typically decompose these higher-
order interactions into a combination of pairwise relationships, by
way of which user preferences (user-item interactions) and sequential
patterns (item-item interactions) are captured by separate compo-
nents. In this paper, we propose a unified method, TransRec, to
model such third-order relationships for large-scale sequential pre-
diction. Methodologically, we embed items into a ‘transition space’
where users are modeled as translation vectors operating on item
sequences. Empirically, this approach outperforms the state-of-the-
art on a wide spectrum of real-world datasets. Data and code are
available at https://sites.google.com/a/eng.ucsd.edu/ruining-he/.

1 INTRODUCTION
Modeling and predicting the interactions between users and items,
as well as the relationships amongst the items themselves are the
main tasks of recommender systems. For instance, in order to predict
sequential user actions like the next product to purchase, movie to
watch, or place to visit, it is essential (and challenging!) to model the
third-order interactions between a user (u), the item(s) she recently
consumed (i), and the item to visit next (j). Not only does the model
need to handle the complexity of the interactions themselves, but
also the scale and inherent sparsity of real-world data.

Traditional recommendation methods usually excel at modeling
two-way (i.e., pairwise) interactions. There are Matrix Factorization
(MF) techniques [8] that make use of inner products to model the
compatibility between user-item pairs (i.e., user preferences). Like-
wise, there are also (first-order) Markov Chain (MC) models [23]
that capture transition relationships between pairs of adjacent items
in sequences (i.e., sequential dynamics), often by way of factorizing
the transition matrix in favor of generalization ability. For the task
of sequential recommendation, researchers have made use of scal-
able tensor factorization methods, such as Factorized Personalized
Markov Chains (FPMC) proposed by Rendle et al. [20]. FPMC mod-
els third-order relationships between u, i, and j by the summation of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys ’17, August 27-31, 2017, Como, Italy
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4652-8/17/08. . . $15.00
https://doi.org/10.1145/3109859.3109882

User      
User      
User 

Translation operation: 

Figure 1: TransRec as a sequential model: Items (movies) are
embedded into a ‘transition space’ where each user is modeled
by a translation vector. The transition of a user from one item
to another is captured by a user-specific translation operation.
Here we demonstrate the historical sequences Su1 , Su2 , and Su3

of three users. Given the same starting point, the movie Mission:

Impossible I, u1 went on to watch the whole series, u2 continued
to watch drama movies by Tom Cruise, and u3 switched to sim-
ilar action movies.

two pairwise relationships: one for the compatibility between u and
the next item j, and another for the sequential continuity between the
previous item i and the next item j. Ultimately, this is a combination
of MF and MC (see Section 3.5 for details).

Recently, there have been two lines of works that aim to improve
FPMC. Personalized metric embedding methods replace the inner
products in FPMC with Euclidean distances, where the metricity
assumption—especially the triangle inequality—enables the model
to generalize better [4, 13, 28]. However, these works still adopt the
framework of modeling the user preference component and sequen-
tial continuity component separately, which may be disadvantageous
as the two components are inherently correlated.

Another line of work [26] makes use of operations like aver-
age/max pooling to aggregate the representations of the user u and
the previous item i, before their compatibility with the next item j

is measured. These works partially address the issue of modeling
the dependence of the two key components, though are hard to in-
terpret and can not benefit from the generalization ability of metric
embeddings.

In this paper, we aim to tackle the above issues by introducing a
new framework called Translation-based Recommendation (Tran-
sRec). The key idea behind TransRec is presented in Figure 1: Items
are embedded as points in a (latent) ‘transition space’; each user is
represented as a ‘translation vector’ in the same space. Then, the
third-order interactions mentioned earlier are captured by a person-
alized translation operation: the coordinates of previous item i, plus
the translation vector of u determine (approximately) the coordinates
of the next item j, i.e., Æ�i + Æ

tu ⇡ Æ�j . Finally, we model the compat-
ibility of the (u, i, j) triplet with a distance function d(Æ�i + Æ

tu , Æ�j ).
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Figure 1: Overview of our model architecture using depth-2 convolutions (best viewed in color). Left: A small example input
graph. Right: The 2-layer neural network that computes the embedding h(2)A of nodeA using the previous-layer representation,
h(1)A , of node A and that of its neighborhood N(A) (nodes B,C,D). (However, the notion of neighborhood is general and not all
neighbors need to be included (Section 3.2).) Bottom: The neural networks that compute embeddings of each node of the input
graph. While neural networks di�er from node to node they all share the same set of parameters (i.e., the parameters of the
��������(1) and ��������(2) functions; Algorithm 1). Boxes with the same shading patterns share parameters; � denotes an
importance pooling function; and thin rectangular boxes denote densely-connected multi-layer neural networks.

• On-the-�y convolutions: Traditional GCN algorithms per-
form graph convolutions by multiplying feature matrices by
powers of the full graph Laplacian. In contrast, our PinSage algo-
rithm performs e�cient, localized convolutions by sampling the
neighborhood around a node and dynamically constructing a
computation graph from this sampled neighborhood. These dy-
namically constructed computation graphs (Fig. 1) specify how
to perform a localized convolution around a particular node, and
alleviate the need to operate on the entire graph during training.

• Producer-consumer minibatch construction: We develop a
producer-consumer architecture for constructing minibatches
that ensures maximal GPU utilization during model training. A
large-memory, CPU-bound producer e�ciently samples node
network neighborhoods and fetches the necessary features to
de�ne local convolutions, while a GPU-bound TensorFlowmodel
consumes these pre-de�ned computation graphs to e�ciently
run stochastic gradient decent.

• E�cient MapReduce inference: Given a fully-trained GCN
model, we design an e�cient MapReduce pipeline that can dis-
tribute the trained model to generate embeddings for billions of
nodes, while minimizing repeated computations.

In addition to these fundamental advancements in scalability, we
also introduce new training techniques and algorithmic innova-
tions. These innovations improve the quality of the representations
learned by PinSage, leading signi�cant performance gains in down-
stream recommender system tasks:

• Constructing convolutions via random walks: Taking full
neighborhoods of nodes to perform convolutions (Fig. 1) would
result in huge computation graphs, so we resort to sampling.
However, random sampling is suboptimal, and we develop a new
technique using short random walks to sample the computa-
tion graph. An additional bene�t is that each node now has an
importance score, which we use in the pooling/aggregation step.

• Importance pooling: A core component of graph convolutions
is the aggregation of feature information from local neighbor-
hoods in the graph. We introduce a method to weigh the impor-
tance of node features in this aggregation based upon random-
walk similarity measures, leading to a 46% performance gain in
o�ine evaluation metrics.

• Curriculum training:We design a curriculum training scheme,
where the algorithm is fed harder-and-harder examples during
training, resulting in a 12% performance gain.
We have deployed PinSage for a variety of recommendation

tasks at Pinterest, a popular content discovery and curation appli-
cation where users interact with pins, which are visual bookmarks
to online content (e.g., recipes they want to cook, or clothes they
want to purchase). Users organize these pins into boards, which con-
tain collections of similar pins. Altogether, Pinterest is the world’s
largest user-curated graph of images, with over 2 billion unique
pins collected into over 1 billion boards.

Through extensive o�ine metrics, controlled user studies, and
A/B tests, we show that our approach achieves state-of-the-art
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• On-the-�y convolutions: Traditional GCN algorithms per-
form graph convolutions by multiplying feature matrices by
powers of the full graph Laplacian. In contrast, our PinSage algo-
rithm performs e�cient, localized convolutions by sampling the
neighborhood around a node and dynamically constructing a
computation graph from this sampled neighborhood. These dy-
namically constructed computation graphs (Fig. 1) specify how
to perform a localized convolution around a particular node, and
alleviate the need to operate on the entire graph during training.

• Producer-consumer minibatch construction: We develop a
producer-consumer architecture for constructing minibatches
that ensures maximal GPU utilization during model training. A
large-memory, CPU-bound producer e�ciently samples node
network neighborhoods and fetches the necessary features to
de�ne local convolutions, while a GPU-bound TensorFlowmodel
consumes these pre-de�ned computation graphs to e�ciently
run stochastic gradient decent.

• E�cient MapReduce inference: Given a fully-trained GCN
model, we design an e�cient MapReduce pipeline that can dis-
tribute the trained model to generate embeddings for billions of
nodes, while minimizing repeated computations.

In addition to these fundamental advancements in scalability, we
also introduce new training techniques and algorithmic innova-
tions. These innovations improve the quality of the representations
learned by PinSage, leading signi�cant performance gains in down-
stream recommender system tasks:

• Constructing convolutions via random walks: Taking full
neighborhoods of nodes to perform convolutions (Fig. 1) would
result in huge computation graphs, so we resort to sampling.
However, random sampling is suboptimal, and we develop a new
technique using short random walks to sample the computa-
tion graph. An additional bene�t is that each node now has an
importance score, which we use in the pooling/aggregation step.

• Importance pooling: A core component of graph convolutions
is the aggregation of feature information from local neighbor-
hoods in the graph. We introduce a method to weigh the impor-
tance of node features in this aggregation based upon random-
walk similarity measures, leading to a 46% performance gain in
o�ine evaluation metrics.

• Curriculum training:We design a curriculum training scheme,
where the algorithm is fed harder-and-harder examples during
training, resulting in a 12% performance gain.
We have deployed PinSage for a variety of recommendation

tasks at Pinterest, a popular content discovery and curation appli-
cation where users interact with pins, which are visual bookmarks
to online content (e.g., recipes they want to cook, or clothes they
want to purchase). Users organize these pins into boards, which con-
tain collections of similar pins. Altogether, Pinterest is the world’s
largest user-curated graph of images, with over 2 billion unique
pins collected into over 1 billion boards.

Through extensive o�ine metrics, controlled user studies, and
A/B tests, we show that our approach achieves state-of-the-art
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• On-the-�y convolutions: Traditional GCN algorithms per-
form graph convolutions by multiplying feature matrices by
powers of the full graph Laplacian. In contrast, our PinSage algo-
rithm performs e�cient, localized convolutions by sampling the
neighborhood around a node and dynamically constructing a
computation graph from this sampled neighborhood. These dy-
namically constructed computation graphs (Fig. 1) specify how
to perform a localized convolution around a particular node, and
alleviate the need to operate on the entire graph during training.

• Producer-consumer minibatch construction: We develop a
producer-consumer architecture for constructing minibatches
that ensures maximal GPU utilization during model training. A
large-memory, CPU-bound producer e�ciently samples node
network neighborhoods and fetches the necessary features to
de�ne local convolutions, while a GPU-bound TensorFlowmodel
consumes these pre-de�ned computation graphs to e�ciently
run stochastic gradient decent.

• E�cient MapReduce inference: Given a fully-trained GCN
model, we design an e�cient MapReduce pipeline that can dis-
tribute the trained model to generate embeddings for billions of
nodes, while minimizing repeated computations.

In addition to these fundamental advancements in scalability, we
also introduce new training techniques and algorithmic innova-
tions. These innovations improve the quality of the representations
learned by PinSage, leading signi�cant performance gains in down-
stream recommender system tasks:

• Constructing convolutions via random walks: Taking full
neighborhoods of nodes to perform convolutions (Fig. 1) would
result in huge computation graphs, so we resort to sampling.
However, random sampling is suboptimal, and we develop a new
technique using short random walks to sample the computa-
tion graph. An additional bene�t is that each node now has an
importance score, which we use in the pooling/aggregation step.

• Importance pooling: A core component of graph convolutions
is the aggregation of feature information from local neighbor-
hoods in the graph. We introduce a method to weigh the impor-
tance of node features in this aggregation based upon random-
walk similarity measures, leading to a 46% performance gain in
o�ine evaluation metrics.

• Curriculum training:We design a curriculum training scheme,
where the algorithm is fed harder-and-harder examples during
training, resulting in a 12% performance gain.
We have deployed PinSage for a variety of recommendation

tasks at Pinterest, a popular content discovery and curation appli-
cation where users interact with pins, which are visual bookmarks
to online content (e.g., recipes they want to cook, or clothes they
want to purchase). Users organize these pins into boards, which con-
tain collections of similar pins. Altogether, Pinterest is the world’s
largest user-curated graph of images, with over 2 billion unique
pins collected into over 1 billion boards.

Through extensive o�ine metrics, controlled user studies, and
A/B tests, we show that our approach achieves state-of-the-art
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Graph Manipulation

• Connectivity  
- modify the edge weights 

• Augmentation  
- extend the connections from external knowledge
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ABSTRACT
Cross-domain collaborative �ltering (CF) aims to alleviate data
sparsity in single-domain CF by leveraging knowledge transferred
from related domains. Many traditional methods focus on enriching
compared neighborhood relations in CF directly to address the spar-
sity problem. In this paper, we propose superhighway construction,
an alternative explicit relation-enrichment procedure to improve
recommendations by enhancing cross-domain connectivity. Specif-
ically, assuming partially overlapped items (users), superhighway
bypassesmulti-hop inter-domain paths between cross-domain users
(items, respectively) with direct paths to enrich the cross-domain
connectivity. The experiments conducted on a real-world cross-
region music dataset and a cross-platform movie dataset show that
the proposed superhighway construction signi�cantly improves
recommendation performance in both target and source domains.

KEYWORDS
recommendation; data sparsity; cross-domain; knowledge transfer
ACM Reference Format:
Kwei-Herng Lai, Ting-Hsiang Wang, Heng-Yu Chi, Yian Chen, Ming-Feng
Tsai, and Chuan-Ju Wang. 2018. Superhighway: Bypass Data Sparsity in
Cross-Domain CF. In Proceedings of the Late-Breaking Results track part of the
Twelfth ACM Conference on Recommender Systems (RecSys ’18), Vancouver,
BC, Cananda, October 2–7, 2018, 2 pages.

1 INTRODUCTION
Collaborative �ltering (CF) in recommender systems is highly sus-
ceptible to data sparsity as the method analyzes observed user-item
interactions solely. In modern e-commerce, as the number of items
and users skyrockets and dwarfs the growth of user-item ratings
in comparison, data sparsity takes an increasing toll on the per-
formance of CF-based recommender systems. In response to such
a vital issue, cross-domain CF is proposed to enhance recommen-
dation quality in a given target domain by leveraging knowledge
transferred from related source domains.

As data sparsity in single-domain CF remarks the lack of ob-
served rating data, intuition suggests to alleviate the sparsity issue

∗Both authors contributed equally to the paper.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
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Figure 1: Illustrative example for superhighways

via explicitly populating relations in a cross-domain system. In
the literature, many traditional methods have been proposed to
directly enrich the compared neighborhood in CF, which, for ex-
ample, attach additional intra-domain edges in target domains [3]
or inter-domain edges in overlapped regions [2]. However, such
methods typically require additional assumptions; for example, the
source domain has to be denser than the target domain [3].

In this paper, our superhighway construction establishes a new
type of relations by means of inference based on existing relations,
which allows the source and the target domains tomutually improve
due to the enhanced cross-domain connectivity. The construction of
superhighways consists of two steps: 1) the identi�cation of cross-
domain user candidates suitable for superhighway construction,
and 2) weight scaling for superhighways to optimize cross-domain
space alignment. Figure 1 illustrates the connectivity enhancement
brought forth by superhighways (red bold lines), which provide
additional leverage of combining the source and the target domains.

2 METHODOLOGY
In collaborative �ltering (CF), user-item interactions are commonly
captured using a bi-adjacency matrixM = (mi j ) 2 R |U |⇥ |I | , where
U and I denote the sets of users and items, respectively;mi j = 1
if there exists an observed association for user i and item j, and
otherwise, mi j = 0. The matrix M can also be represented as a
bipartite graph G = (U , I ,R), where R = {(i, j) |mi j = 1}.

Given a cross-domain systemwith source domainGS = (US, IS,RS)
and target domain GT = (UT, IT,RT) such that the set of shared
items Ĩ = IS \ IT , ú, a highway is de�ned as a path between
user ui 2 US and uj 2 UT through shared items in Ĩ . To enrich the
cross-domain connectivity, the superhighway construction, denoted
as an operation F , establishes direct relations between candidate
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via explicitly populating relations in a cross-domain system. In
the literature, many traditional methods have been proposed to
directly enrich the compared neighborhood in CF, which, for ex-
ample, attach additional intra-domain edges in target domains [3]
or inter-domain edges in overlapped regions [2]. However, such
methods typically require additional assumptions; for example, the
source domain has to be denser than the target domain [3].

In this paper, our superhighway construction establishes a new
type of relations by means of inference based on existing relations,
which allows the source and the target domains tomutually improve
due to the enhanced cross-domain connectivity. The construction of
superhighways consists of two steps: 1) the identi�cation of cross-
domain user candidates suitable for superhighway construction,
and 2) weight scaling for superhighways to optimize cross-domain
space alignment. Figure 1 illustrates the connectivity enhancement
brought forth by superhighways (red bold lines), which provide
additional leverage of combining the source and the target domains.

2 METHODOLOGY
In collaborative �ltering (CF), user-item interactions are commonly
captured using a bi-adjacency matrixM = (mi j ) 2 R |U |⇥ |I | , where
U and I denote the sets of users and items, respectively;mi j = 1
if there exists an observed association for user i and item j, and
otherwise, mi j = 0. The matrix M can also be represented as a
bipartite graph G = (U , I ,R), where R = {(i, j) |mi j = 1}.

Given a cross-domain systemwith source domainGS = (US, IS,RS)
and target domain GT = (UT, IT,RT) such that the set of shared
items Ĩ = IS \ IT , ú, a highway is de�ned as a path between
user ui 2 US and uj 2 UT through shared items in Ĩ . To enrich the
cross-domain connectivity, the superhighway construction, denoted
as an operation F , establishes direct relations between candidate

ar
X

iv
:1

80
8.

09
78

4v
1 

 [c
s.I

R]
  2

8 
A

ug
 2

01
8



CLIP Lab, National Chengchi University CFDA Lab, Academia Sinica�123

• Multi-Task Learning  
- shared representations for multi-tasks
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Collaborative Similarity Embedding (CSE) WWW’19

Chih-Ming Chen, Chuan-Ju Wang, Ming-Feng Tsai, Yi-Hsuan Yang: 
Collaborative Similarity Embedding for Recommender Systems. WWW 
2019: 2637-2643
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Direct	Similarity	Embedding	(DSEmbed)

Neighborhood	Similarity	Embedding	(NSEmbed)

�
<latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit>

LNS
<latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit><latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit><latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit><latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit>

LNS
<latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit><latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit><latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit><latexit sha1_base64="tjCLZw19VsL52uWZ028hJmvNIiI=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LLgxoVIRfuANoTJdNIOnUzCzKRQQv7EjQtF3Pon7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3K2vrG5lZ1u7azu7d/YB8edVScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbTG4KvzulUrFYPOlZQr0IjwQLGcHaSL5tDyKsxwTz7C73s/vH3LfrTsOZA60StyR1KNHy7a/BMCZpRIUmHCvVd51EexmWmhFO89ogVTTBZIJHtG+owBFVXjZPnqMzowxRGEvzhEZz9fdGhiOlZlFgJoucatkrxP+8fqrDay9jIkk1FWRxKEw50jEqakBDJinRfGYIJpKZrIiMscREm7JqpgR3+curpHPRcJ2G+3BZb7bKOqpwAqdwDi5cQRNuoQVtIDCFZ3iFNyuzXqx362MxWrHKnWP4A+vzB8xVk8s=</latexit>

LDS
<latexit sha1_base64="tzV//7+Hwzs9Gr8gq68dtbNxIck=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LKgCxcuKtoHtCFMppN26GQSZiaFEvInblwo4tY/ceffOGmz0NYDA4dz7uWeOUHCmdKO821V1tY3Nreq27Wd3b39A/vwqKPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHJT+N0plYrF4knPEupFeCRYyAjWRvJtexBhPSaYZ/e5n90+5r5ddxrOHGiVuCWpQ4mWb38NhjFJIyo04Vipvusk2suw1IxwmtcGqaIJJhM8on1DBY6o8rJ58hydGWWIwliaJzSaq783MhwpNYsCM1nkVMteIf7n9VMdXnsZE0mqqSCLQ2HKkY5RUQMaMkmJ5jNDMJHMZEVkjCUm2pRVMyW4y19eJZ2Lhus03IfLerNV1lGFEziFc3DhCppwBy1oA4EpPMMrvFmZ9WK9Wx+L0YpV7hzDH1ifP70Zk8E=</latexit><latexit sha1_base64="tzV//7+Hwzs9Gr8gq68dtbNxIck=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LKgCxcuKtoHtCFMppN26GQSZiaFEvInblwo4tY/ceffOGmz0NYDA4dz7uWeOUHCmdKO821V1tY3Nreq27Wd3b39A/vwqKPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHJT+N0plYrF4knPEupFeCRYyAjWRvJtexBhPSaYZ/e5n90+5r5ddxrOHGiVuCWpQ4mWb38NhjFJIyo04Vipvusk2suw1IxwmtcGqaIJJhM8on1DBY6o8rJ58hydGWWIwliaJzSaq783MhwpNYsCM1nkVMteIf7n9VMdXnsZE0mqqSCLQ2HKkY5RUQMaMkmJ5jNDMJHMZEVkjCUm2pRVMyW4y19eJZ2Lhus03IfLerNV1lGFEziFc3DhCppwBy1oA4EpPMMrvFmZ9WK9Wx+L0YpV7hzDH1ifP70Zk8E=</latexit><latexit sha1_base64="tzV//7+Hwzs9Gr8gq68dtbNxIck=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LKgCxcuKtoHtCFMppN26GQSZiaFEvInblwo4tY/ceffOGmz0NYDA4dz7uWeOUHCmdKO821V1tY3Nreq27Wd3b39A/vwqKPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHJT+N0plYrF4knPEupFeCRYyAjWRvJtexBhPSaYZ/e5n90+5r5ddxrOHGiVuCWpQ4mWb38NhjFJIyo04Vipvusk2suw1IxwmtcGqaIJJhM8on1DBY6o8rJ58hydGWWIwliaJzSaq783MhwpNYsCM1nkVMteIf7n9VMdXnsZE0mqqSCLQ2HKkY5RUQMaMkmJ5jNDMJHMZEVkjCUm2pRVMyW4y19eJZ2Lhus03IfLerNV1lGFEziFc3DhCppwBy1oA4EpPMMrvFmZ9WK9Wx+L0YpV7hzDH1ifP70Zk8E=</latexit><latexit sha1_base64="tzV//7+Hwzs9Gr8gq68dtbNxIck=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6LKgCxcuKtoHtCFMppN26GQSZiaFEvInblwo4tY/ceffOGmz0NYDA4dz7uWeOUHCmdKO821V1tY3Nreq27Wd3b39A/vwqKPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHJT+N0plYrF4knPEupFeCRYyAjWRvJtexBhPSaYZ/e5n90+5r5ddxrOHGiVuCWpQ4mWb38NhjFJIyo04Vipvusk2suw1IxwmtcGqaIJJhM8on1DBY6o8rJ58hydGWWIwliaJzSaq783MhwpNYsCM1nkVMteIf7n9VMdXnsZE0mqqSCLQ2HKkY5RUQMaMkmJ5jNDMJHMZEVkjCUm2pRVMyW4y19eJZ2Lhus03IfLerNV1lGFEziFc3DhCppwBy1oA4EpPMMrvFmZ9WK9Wx+L0YpV7hzDH1ifP70Zk8E=</latexit>

�UC
<latexit sha1_base64="B61lcgc8IFnr6wJ/Pa/b6q6iTsU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOhFy9CBNNW2lg22027dHcTdjdCCf0VXjwo4tWf481/47bNQVsfDDzem2FmXpRypo3rfjultfWNza3ydmVnd2//oHp41NJJpggNSMIT1YmwppxJGhhmOO2kimIRcdqOxs2Z336iSrNE3ptJSkOBh5LFjGBjpYeeP2KPedCc9qs1t+7OgVaJV5AaFPD71a/eICGZoNIQjrXuem5qwhwrwwin00ov0zTFZIyHtGupxILqMJ8fPEVnVhmgOFG2pEFz9fdEjoXWExHZToHNSC97M/E/r5uZ+DrMmUwzQyVZLIozjkyCZt+jAVOUGD6xBBPF7K2IjLDCxNiMKjYEb/nlVdK6qHtu3bu7rDVuizjKcAKncA4eXEEDbsCHAAgIeIZXeHOU8+K8Ox+L1pJTzBzDHzifP5bpkEo=</latexit><latexit sha1_base64="B61lcgc8IFnr6wJ/Pa/b6q6iTsU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOhFy9CBNNW2lg22027dHcTdjdCCf0VXjwo4tWf481/47bNQVsfDDzem2FmXpRypo3rfjultfWNza3ydmVnd2//oHp41NJJpggNSMIT1YmwppxJGhhmOO2kimIRcdqOxs2Z336iSrNE3ptJSkOBh5LFjGBjpYeeP2KPedCc9qs1t+7OgVaJV5AaFPD71a/eICGZoNIQjrXuem5qwhwrwwin00ov0zTFZIyHtGupxILqMJ8fPEVnVhmgOFG2pEFz9fdEjoXWExHZToHNSC97M/E/r5uZ+DrMmUwzQyVZLIozjkyCZt+jAVOUGD6xBBPF7K2IjLDCxNiMKjYEb/nlVdK6qHtu3bu7rDVuizjKcAKncA4eXEEDbsCHAAgIeIZXeHOU8+K8Ox+L1pJTzBzDHzifP5bpkEo=</latexit><latexit sha1_base64="B61lcgc8IFnr6wJ/Pa/b6q6iTsU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOhFy9CBNNW2lg22027dHcTdjdCCf0VXjwo4tWf481/47bNQVsfDDzem2FmXpRypo3rfjultfWNza3ydmVnd2//oHp41NJJpggNSMIT1YmwppxJGhhmOO2kimIRcdqOxs2Z336iSrNE3ptJSkOBh5LFjGBjpYeeP2KPedCc9qs1t+7OgVaJV5AaFPD71a/eICGZoNIQjrXuem5qwhwrwwin00ov0zTFZIyHtGupxILqMJ8fPEVnVhmgOFG2pEFz9fdEjoXWExHZToHNSC97M/E/r5uZ+DrMmUwzQyVZLIozjkyCZt+jAVOUGD6xBBPF7K2IjLDCxNiMKjYEb/nlVdK6qHtu3bu7rDVuizjKcAKncA4eXEEDbsCHAAgIeIZXeHOU8+K8Ox+L1pJTzBzDHzifP5bpkEo=</latexit><latexit sha1_base64="B61lcgc8IFnr6wJ/Pa/b6q6iTsU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOhFy9CBNNW2lg22027dHcTdjdCCf0VXjwo4tWf481/47bNQVsfDDzem2FmXpRypo3rfjultfWNza3ydmVnd2//oHp41NJJpggNSMIT1YmwppxJGhhmOO2kimIRcdqOxs2Z336iSrNE3ptJSkOBh5LFjGBjpYeeP2KPedCc9qs1t+7OgVaJV5AaFPD71a/eICGZoNIQjrXuem5qwhwrwwin00ov0zTFZIyHtGupxILqMJ8fPEVnVhmgOFG2pEFz9fdEjoXWExHZToHNSC97M/E/r5uZ+DrMmUwzQyVZLIozjkyCZt+jAVOUGD6xBBPF7K2IjLDCxNiMKjYEb/nlVdK6qHtu3bu7rDVuizjKcAKncA4eXEEDbsCHAAgIeIZXeHOU8+K8Ox+L1pJTzBzDHzifP5bpkEo=</latexit> �IC
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(a) The bottom part depicts the direct similarity embedding module for user-item
associations, whereas the upper left (right) part corresponds to modeling user-user
(item-item, respectively) similarity with the neighborhood similarity embedding
module. An optimization step includes a sampled pair of a user and an item in DSEm-
bed and multiple high-order relation pairs in NSEmbed.
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(b) The left part shows that a target user-item pair (U1-
I1) can be directly sampled from the observed edges
for DSEmbed; the right part shows that for U1 (or I1),
a 2-step randomwalk is applied to obtain the contexts
used in the NSEmbed module.

Figure 1: An overview of the proposed CSE framework

the direct and in-direct edges of user-item interactions in a sim-
ple and e�ective way. CSE involves a direct similarity embedding
module for modeling user-item associations as well as a neigh-
borhood similarity embedding module for modeling user-user and
item-item similarities. The former module provides the �exibility to
implement various types of modeling techniques for user-item asso-
ciations, whereas the later module models user-user and item-item
relations via k-order neighborhood proximity. To simultaneously
manage the two modules, we introduce triplet embedding into the
proposed framework to ideally model user-user, item-item cluster-
ing and user-item relations in a single and joint-learning model,
while most prior arts use only one or two embedding mappings
in their methods. Moreover, the two sub-modules are fused by a
carefully designed sampling technique for scalability and �exibil-
ity. The space complexity and time of convergence are both only
linear with respect to the number of observed user-item associ-
ations. In addition, with the proposed sampling techniques, CSE
provides the �exibility to shape di�erent relation distributions in
its optimization.

Extensive experiments were conducted on eight recommenda-
tion datasets. We compare the performance of CSE with classic
methods such as matrix factorization (MF) and Bayesian personal-
ized ranking (BPR) [19], recent methods that incorporate user-user
and/or item-item relations [8, 13, 27], as well as several general
graph embedding methods [5, 16]. The evaluation shows that CSE
outperforms the competing methods for seven out of the eight
datasets. Our framework advances the state-of-the-art recommen-
dation algorithms along the following four dimensions.

(1) The CSE serves as a generalized framework that models
comprehensive pairwise relations among users and items
with a uni�ed function in a simple and e�ective manner.

(2) The proposed sampling technique enables the suitability of
CSE for large-scale user-item recommendations.

(3) We report extensive experiments over eight recommendation
datasets covering di�erent user-item interaction types, levels
of data sparsity, and data sizes, demonstrating the robustness,
e�ciency, and e�ectiveness of our framework.

(4) For reproducibility, we share the source code of CSE online
at a GitHub repo,1 by which the learning process can be done
within an hour for each dataset performed in this work.

2 PROPOSED CSE FRAMEWORK
Problem Formulation. A recommender system provides a list of

ranked items to users based on their historical interactions with
items. LetU and I denote the sets of users and items, respectively.
User-item associations can be presented as a bipartite graph G =
(V ,E), where V = {�1, . . . ,� |V | } = U [ I , and E represents the set
of observed user-item associations. Note that for explicit rating
data, the weights of the user-item preference edges can be positive
real numbers, whereas for implicit interactions, the bipartite graph
becomes a binary graph. The goal of the CSE framework is to obtain
an embedding matrix � 2 R |V |⇥d that maps each user and item
into a d-dimensional embedding vector for item recommendation;
that is, with the learned embedding matrix �, for a user �i 2 U ,
the proposed framework generates the top-N recommended items
via computing the similarity between the embedding vector of the

1 https://github.com/cnclabs/proNet-core
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user-item	preference

cluster 
users

cluster 
items

Log	Likelihood

log �(~v1 · ~v1 ) + log �(~v1 · ~v2 ) + log �(~v1 · ~v3 )

<latexit sha1_base64="sKIpCrhEcKyjsW1I+pPf+GTf5e8=">AAACcHiclVFLSwMxGMyur7q+qr0IKkaL4APKbivoseDFYwW3LXTXks2mbWh2syTZQlkK3vx/3vwRXvwFpo+DbT3owAfDzITkmwQJo1LZ9odhrqyurW/kNq2t7Z3dvfz+QV3yVGDiYs64aAZIEkZj4iqqGGkmgqAoYKQR9B/GfmNAhKQ8flbDhPgR6sa0QzFSWmrn3zzGu56k3QhdegOCs8HoJXNGHvRwyNWccgVvrL+ly/9KV8bpdr5ol+wJ4DJxZqQIZqi18+9eyHEakVhhhqRsOXai/AwJRTEjI8tLJUkQ7qMuaWkao4hIP5sUNoIXWglhhws9sYIT9eeJDEVSDqNAJyOkenLRG4u/ea1Ude79jMZJqkiMpxd1UgYVh+P2YUgFwYoNNUFYUP1WiHtIIKz0H1m6BGdx5WVSL5ecSqn8dFusuq/TOnLgCJyDS+CAO1AFj6AGXIDBp1Ewjo0T48s8NE/Ns2nUNGYVFsAczOtvsbO9pA==</latexit>

Log	Likelihood Log	Likelihood

Optimizer2Optimizer1 Optimizer3
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Lecture (Sean & CM, 65 minutes)  

Hands-on (CM, 15 minutes) 

Q&A (Sean & CM, 10 minutes)
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QR to Slides, Codes, Abstract

Coming Next …
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SMORe

https://github.com/cnclabs/smore

1

3

3

5

3

2 alias method

alias method

alias method

Compressed Sparse Row (CSR)  
+ Alias Method  

https://github.com/cnclabs/smore
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SMORe

1. clone it 
2. enter it 
3. compile it
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SMORe
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SMORe for Most End Users
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SMORe for Most End Users
Graph	as	input	(edge	list)

Embeddings	as	output
COMMAND  

LINE  
INTERFACE

INPUT

OUTPUT
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• On-Going Work
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SMORe (another modularized version)

find 
the 
branch 
smore

it’s	under	refactoring	…
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Optimizer()

Sampler()

Mapper()

Graph

Embeddings 
for	Recommendations

entity

loss

embedding

embedding

SMORe for Developers
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SMORe Example Codes (in smore branch)

Optimizer()

Sampler()
Mapper()

Graph()
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SMORe Factorization (in smore branch)



CLIP Lab, National Chengchi University CFDA Lab, Academia Sinica�139

SMORe Factorization (in smore branch)

run it until conditions hold
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SMORe Factorization (in smore branch)

run it until conditions hold

sample positive (user, item) pair



CLIP Lab, National Chengchi University CFDA Lab, Academia Sinica�141

SMORe Factorization (in smore branch)

run it until conditions hold

sample positive (user, item) pair
map user/item to its embedding
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SMORe Factorization (in smore branch)

run it until conditions hold

sample positive (user, item) pair
map user/item to its embedding

estimate the loss from log likelihood
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SMORe Factorization (in smore branch)

run it until conditions hold

sample positive (user, item) pair
map user/item to its embedding

estimate the loss from log likelihood
update embedding
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SMORe Factorization (in smore branch)

run it until conditions hold

sample positive (user, item) pair
map user/item to its embedding

estimate the loss from log likelihood
update embedding

mode negative (user, item) pairSMO
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Graph

[0.08	0.02	0.28]

[-0.31	-0.1	0.1]

[-0.15	-0.3	0.2]

Embeddings

Optimizer()

Sampler()

Mapper()
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Graph

[0.08	0.02	0.28]

[-0.31	-0.1	0.1]

[-0.15	-0.3	0.2]

Embeddings

unit1 unit2

unit3 unit4

Optimizer()

Sampler()

Mapper()

Optimizer()

Sampler()

Mapper()

Optimizer()

Sampler()

Mapper()

Optimizer()

Sampler()

Mapper()
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Graph

[0.08	0.02	0.28]

[-0.31	-0.1	0.1]

[-0.15	-0.3	0.2]

Embeddings

https://www.reddit.com/r/aww/comments/2oagj8/multithreaded_programming_theory_and_practice/

Multi-threading

Benjamin Recht, Christopher Ré, Stephen J. Wright, Feng Niu: Hogwild: 
A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. 
NIPS 2011: 693-701

HOGWILD!

https://www.reddit.com/r/aww/comments/2oagj8/multithreaded_programming_theory_and_practice/
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Handles complex systems of interactions as a unified graph 
structure, allowing joint mining of diverse information to address 
core problems for REC such as data sparsity and cold start  

Generalizes relations as graph structures composed of vertices 
and edges. Models can explore a spectrum of complex structures 
and their combinations for any given REC tasks 

Breaks GE into sampler, mapper, and optimizer; which extracts 
interactions as structures, converts entities into spatial features, 
and preserves relatedness as spatial properties, respectively

Characteristics of SMORe

�148

Holistic

Structural

Modular
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Benefits of SMORe
Speeds development by reusing codes; provides model toolkit 
for REC and fair baseline comparison; and accelerates training 
process using CSAR and HOGWILD! 

Adapts to different REC needs on module-level for embedding 
and structure-level for relations; also opens to deep methods, 
which continue to churn out SOTA models over the past years 

Jointly captures different relations from HINs by selecting 
graph structures using sampler and combining embeddings 
using mapper

�149

Multi-task

Speedy

Effective
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Lecture (Sean & CM, 65 minutes)  

Hands-on (CM, 15 minutes) 

Q&A (Sean & CM, 10 minutes)
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QR to Slides, Codes, Abstract

Coming Next …
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SMORe :  
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Link to Codes, Slides, Abstract : 
https://github.com/cnclabs/smore/
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